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Six month—lead downscaling prediction of winter to spring drought
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[1] The potential of using a dynamical-statistical method for
long-lead drought prediction was investigated. In particular,
the APEC Climate Center one-tier multimodel ensemble
(MME) was downscaled for predicting the standardized
precipitation evapotranspiration index (SPEI) over 60 stations
in South Korea. SPEI depends on both precipitation and
temperature, and can incorporate the effect of global warming
on the balance between precipitation and evapotranspiration.
It was found that the one-tier MME has difficulty in
capturing the local temperature and rainfall variations over
extratropical land areas, and has no skill in predicting SPEI
during boreal winter and spring. On the other hand,
temperature and precipitation predictions were substantially
improved in the downscaled MME. In conjunction with
variance inflation, downscaled MME can give reasonably
skillful 6 month—lead forecasts of SPEI for the winter to
spring period. Our results could lead to more reliable
hydrological extreme predictions for policymakers and
stakeholders in the water management sector, and for better
mitigation and climate adaptations. Citation: Sohn, S.-J., J.-B.
Ahn, and C.-Y. Tam (2013), Six month-lead downscaling prediction
of winter to spring drought in South Korea based on a multimodel
ensemble, Geophys. Res. Lett., 40, doi:10.1002/grl.50133.

1. Introduction

[2] Precipitation deficits have effects on several hydrologi-
cal sectors such as the ground water, reservoir storage, soil
moisture, snowpack, and streamflow [McKee et al., 1993].
South Korea is susceptible to droughts, abnormal aridity,
and dust storms in boreal spring. Droughts in the region are as-
sociated with anomalous large-scale atmospheric circulation
in the northern hemisphere [Kim et al., 2005]. Some major
droughts in midlatitudes of the northern hemisphere can also
be attributed to atmospheric teleconnections related to tropical
sea surface temperature variability [Hoerling and Kumar,
2003; Schubert et al., 2007]. Among the four seasons, boreal
winter brings the smallest amount of rain to the region; rainfall
accumulated in winter can be very important in determining
the springtime drought condition. Capturing hydrological
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variations from winter to spring is therefore essential for prop-
erly predicting droughts in South Korea.

[3] There are a number of indicators, such as the Palmer
drought severity index (PDSI) [Palmer, 1965] or the stan-
dardized precipitation index (SPI) [McKee et al., 1993], that
can be used to define hydrological extremes. Recently, a
new multivariable standardized precipitation evapotranspira-
tion index (SPEI) has been proposed to quantify drought
severity [Vicente-Serrano et al.,2010]. SPEL is able to incorpo-
rate the effect of hydrological balance between precipitation
and potential evapotranspiration, the latter being sensitive to
air temperature. The SPEI combines the sensitivity of PDSI
to changes in evaporation demand with the simplicity of calcu-
lation and the multitemporal nature of SPI [Vicente-Serrano
et al., 2010] (see also section 2 and Supporting Information,
section A1, for more details). Figure 1 gives the 6 month mean
anomalous surface air temperature and precipitation in the
December to May period from 1983/1984 to 2003/2004 aver-
aged over South Korea. They are seen to be highly variable
and fluctuate with comparable timescales. Also shown are the
corresponding SPEI values covering the same period. A strong
covariability between SPEI and precipitation can be seen; this
means that drought is mostly attributed to the deficit of precip-
itation in the region. On the other hand, notice that the air tem-
perature is positively correlated with rainfall (with a correlation
coefficient of 0.56, exceeding the 99% significance level). During
the peak of El Nifio in boreal winter and the ensuing spring, the
climate in East Asia tends to be warmer and wetter than normal
[Wang et al., 2000]. This implies that changes of precipitation
can be in concert with those of temperature. More importantly,
there is a robust warming trend in the temperature record (see
Figure 1; exceeding the 99% significance level based on a two-
tailed Student’s ¢ test). This will increase drought severity due
to increased evapotranspiration. Overall, the above implies that
hydrological extremes, as identified by the multivariable SPEI,
might therefore be different from those based on the single-vari-
able SPI. It thus seems imperative to consider both the effects of
temperature and precipitation variability on extreme drought in
order to properly define long-term hydrological variations over
South Korea.

[4] To predict extreme hydrological droughts, it is necessary
to have reliable forecasts of deficit or surplus of precipitation
with a lead time of 6 months or beyond. However, predicting
the summer mean precipitation over the Asian summer
monsoon region, even with a 1 month lead, remains challeng-
ing for climate models [Wang et al., 2007, 2008a, 2008b,
2009; Kug et al., 2008; Lee et al., 2010, 2011]. This study
evaluates the potential of using one-tier multimodel ensemble
(MME) products for long-lead drought predictions. Kang et al.
[2009] used statistically downscaled global model outputs to
derive regional climate information. Here, we developed a 6
month—lead prediction system for hydrological extremes over
60 stations in South Korea based on downscaled MME
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Figure 1.

Time series of the observed December to May anomalous precipitation (black solid line), surface air temperature

(black dashed line), and the standardized precipitation evapotranspiration index (SPEI) (red solid line) during the 1983/1984
to 2003/2004 period, averaged over 60 station locations in South Korea. The correlation between the former two time series
exceeds the 99% significance level, and its value is given in the upper right. Solid and dashed straight lines (in blue) show
the linear trend of the precipitation and temperature measurements, respectively.

(DMME) rainfall and temperature products. In the remain-
ing sections of this report, the data sets and methodology be-
ing used will be described, and the performance of the 6
month-lead DMME prediction system in capturing
hydrological extremes over South Korean will be presented,
followed by concluding remarks.

2. Data sets and methodology

[s] The precipitation and surface air temperature data for
calibrating and validating SPEI predictions were based on
observations obtained from 60 stations in South Korea (see
Sohn et al. [2012b]). For model data, historical retrospective
forecasts from five different coupled models participating in
the APEC Climate Center (APCC) one-tier MME 6 month
prediction [Sohn et al., 2012a] were considered. The APCC
one-tier MME comprises the APCC seasonal prediction system
based on the Community Climate System Model [Jeong et al.,
2008], Predictive Ocean Atmosphere Model for Australia from
the Bureau of Meteorology Research Center [Wang et al.,
2008c], the National Centers for Environmental Prediction
Coupled Forecast System [Saha et al., 2006], and coupled
general circulation models from Seoul National University
[Ham and Kang, 2010] and Pusan National University
[Sun and Ahn, 2011]. All historical predictions were initiated
in November and targeted for December to May, with the
common hindcast period of 1983/1984 to 2003/2004. A brief
summary of the model experiments can be found in Table 1.

[6] In order to predict hydrological extremes more accu-
rately, we proposed to use temperature and precipitation
products from DMME. The regression-based coupled pattern
projection method with optimal predictor selection was used
for statistical downscaling [Kang et al., 2009; Sohn et al.,
2012b]. The novelty of this approach is the use of model

Table 1. Description of Models Used in This Study

output statistics [Wilks, 1995] for predicting meteorological
variables on the station scale. Previous downscaling studies
using APCC MME products mainly focus on products from
atmospheric general circulation models [Kang et al., 2009].
On the other hand, our pool of predictors comprises both
atmospheric variables (namely, sea level pressure, 2 m air tem-
perature, 500 hPa geopotential height, 850 hPa temperature,
and 850 and 200 hPa winds) and the oceanic variable of sea
surface temperature. The latter is included because of the po-
tential linkage between tropical sea surface temperature and
hydrological variations in midlatitudes (see Introduction).

[7] These nine model variables are used for downscaling
and the predictor is the one with the best downscaling pre-
diction skill. In this coupled pattern projection method for
downscaling, the linkage between observed station data
and each of the nine potential predictors was first revealed
based on correlation analysis. The pattern projection method
selects the optimal window for each station by performing
global scanning of different variables. It was found that,
for the same predictand, the most signal-bearing predictor
can be different from one station to another (figures not
shown). This is consistent with the notion that different
factors are responsible for the interannual climate variations
at different station locations, owing to the influence of local
terrain [Kang et al., 2009]. Using a single predictor therefore
might not be adequate for specifying climate variations for
all stations. Also, to avoid overestimation of skill scores,
the above downscaling procedure was carried out based on
a “leave-one-out” cross-validation framework [Kang et al.,
2009; Sohn et al., 2012b]. Finally, cross-validated correla-
tion coefficients were computed in order to assess the skill
based on each individual predictor, and the best predictor
as well as the associated transfer function was adopted for
statistical downscaling. By repeating this for all years, a full

Institute Model AGCM Resolution OGCM Resolution Ensemble Member
APCC CCSM3 CAM3 T85 L26 POP1.3 gxlv3 L40 5
BMRC POAMA BAM3 T47 L17 ACOM2 0.5-1.5° lat x 2°lon L25 10
NCEP CFS GFS T62 L64 MOM3 1/3° lat x 5/8° lon L27 15
PNU PNU CCM3 T42 L18 MOM3 0.7-2.8° lat x 2.8125° lon L29 5
SNU SNU SNU T42 L21 MOM2.2 1/3° lat x 1° lon L32 6

Note: AGCM, Atmospheric General Circulation Model; OGCM, Oceanic General Circulation Model; CCSM, Community Climate System Model; POAMA,
Predictive Ocean Atmosphere Model for Australia; NCEP, National Centers for Environmental Prediction; CFS, Coupled Forecast System; BMRC, Bureau of
Meteorology Research Center; SNU, Seoul National University; PNU, Pusan National University.
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set of downscaled predictions can be obtained. The final
forecast of DMME is then the simple average of downscaled
forecasts of the five models using their respective optimal
predictors. Furthermore, appropriate inflation was applied
to correct the small variance of MME and regression-based
downscaled outputs [Sohn et al., 2012b]. The method simply
rescales the variance of predicted rainfall and temperature to
that based on their respective climate records.

[s] SPI identifies the standardized precipitation surplus or
deficit within a period of time. It is found by first fitting the
long-term precipitation record to a Gamma distribution,
which is further transformed into a standardized normal
distribution. The SPI value is then the “z-score” of the
anomalous precipitation accumulated within a particular pe-
riod [McKee et al., 1993]. The newly proposed SPEI, which
is mathematically similar to SPI, makes use of both precipi-
tation and temperature records [Vicente-Serrano et al.,
2010]. It involves computing the accumulated deficit or
surplus of climate water balance, which is the difference
between precipitation and potential evapotranspiration, and
the adjustment to a log-logistic probability distribution.
Following Vicente-Serrano et al. [2010], potential evapo-
transpiration is calculated empirically from air temperature
(Thornthwaite [1948]; see also section Al for Supporting
Information). Although the commonly used PDSI is also
based on soil water balance, it assumes autoregressive char-
acteristics with a fixed temporal scale of between 9 and
12 months. Thus, PDSI might not be suitable for monitoring
shorter-term drought events [Guttman, 1998]. Here, we used
the inflated DMME temperature and rainfall products for
station-scale SPEI predictions over South Korea. Because
the ultimate goal is to predict 6 month SPEI, we only

consider 6 months of accumulated precipitation and temper-
ature during December to May as inputs for SPEI calcula-
tions. The accumulation is based on monthly MME (or
DMME) forecasts within the boreal winter to spring period.
Temporal correlation [Barnston, 1994] as well as the linear
error in probability score [Potts et al., 1996], which mea-
sures the error in the probability space rather than in the real
measurement space, were used to assess the skill of extreme
predictions.

3. Six month—lead DMME prediction for
hydrological extremes in South Korea

[v] Figure 2 compares temporal correlation coefficient
(TCC) between the observed and raw MME monthly mean
rainfall and temperature, and that for DMME, at each station
location from December to May. The values of TCCs aver-
aged over the 60 stations, as well as the “distance” between
the raw and DMME skill scores (defined as the square root
of the sum of squares of averaged TCCs) are given in the same
figure. It is clear that the overall skill of DMME is much better
than the original MME for both variables. It is also noteworthy
that the improvement in the forecast skill brought about by
downscaling actually increases as the lead time increases
(compare, ¢.g., Figures 2a and 2f). The skill improvement in
most locations can be attributed to the station-dependent opti-
mal predictor selection in the downscaling procedure. In fact,
DMME results averaged over all predictors lead to no obvious
increase of skill for precipitation, as well as to a decrease of
skill for air temperature predictions (see Supporting Information,
Figure Al). Overall, this suggests that DMME has the potential
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Figure 2. Scatter plots of TCCs between the observed and predicted precipitation (x axis) and temperature (y axis), for the
target month of (a) December, (b) January, (c¢) February, (d) March, (e) April, and (f) May. Each orange (gray) point
represents the results based on downscaled (raw) MME predictions for one station location. The blue and red dots denote
the TCC values averaged over 60 stations in South Korea for raw and DMME, respectively. The “distance” between the
downscaled and raw MME results is given at the upper right of each panel. See text for details.
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Figure 3. Scatter plots of TCCs (x axis) and linear error in probability scores (v axis) between the observed and predicted 6
month SPEI, for (a) original skills and (b) the difference between DMME and MME. In Figure 3a, each red (blue) point
represents the result based on downscaled (raw) MME predictions for one station location.
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Figure 4. Time series of the observed and predicted 6
month SPEIs during the 1983/1984 to 2003/2004 period,
averaged over 60 station locations in South Korea. Straight
lines in red, black, and blue indicate observations, raw
MME, and DMME predictions, respectively. Correlation
coefficients between observations and predictions for the
time series of MME and DMME are given in the parentheses
following the legends.

in providing reliable station-scale precipitation and temperature
signals with long forecast lead time.

[10] Finally, DMME forecasts were applied for local
drought predictions. Before using the DMME products for
computing SPEI, their values were inflated in order to match
the realistic amplitudes of the anomalous precipitation and
temperatures following Sohn et al. [2012b] (see Supporting
Information, Figures A2 and A3). The TCC and linear error
in probability skill scores of the 6 month SPEI ending in
May from raw and DMME are given in Figure 3. It can be
seen that the skill improvement between temperature and
precipitation indeed leads the better skill of DMME SPEL
Statistical downscaling can correct a large part of the sys-
tematic errors. This can be clearly seen in Figure 3b. Overall,
DMME, in conjunction with variance inflation, can signifi-
cantly improve the skill in most of the regions.

[11] The 1983/04-2003/04 SPEI time series during win-
ter to spring for the whole of South Korea (i.e., averaged
over 60 stations) from observation, MME, and DMME
are further compared in Figure 4. The correlation coeffi-
cient between observations and raw MME is 0.04. For

DMME, the correlation is 0.50 (significant at the 95%
level). The strong correlation suggests that DMME has
better skill than MME in predicting the year-to-year vari-
ation of droughts. Consistent with the previous analyses,
this suggests that the DMME is able to capture the histor-
ical large-scale drought events over South Korea.

4. Concluding remarks

[12] A new dynamical-statistical approach to carry out 6
month—lead forecasts of extreme drought events on the station
scale has been developed and evaluated. Extreme droughts
were identified by computing the values of SPEI, incorpo-
rating the effect of temperature change in the hydrological
variation assessment. Local values of temperature and
precipitation were taken from the APCC one-tier MME pro-
ducts, which were downscaled based on the best predictor
selection, and downscaling was done in a cross-validated
framework in order to avoid any overestimation of skill.
Finally, SPEI was predicted using the inflated DMME tem-
perature and precipitation. Compared with outputs based on
raw MME, this method was found to greatly improve long-
lead predictions of droughts over South Korea in boreal
winter and spring. There was a pronounced enhancement
of skill at station locations that were strongly affected by
the local topography. Overall, DMME in conjunction with
variance inflation can be a powerful tool for local-scale
SPEI prediction.

[13] The newly proposed SPEI, which considers the
climatic water balance between precipitation and evapo-
transpiration, can properly account for the effect of global
warming on hydrological variations. It is advantageous to
predict such a water balance—based hydrological indicator
on the scale relevant to river basin and catchments for facil-
itating early warning of droughts a few months ahead. Under
the background of climate change, advanced information on
hydrological extremes will be particularly useful for deci-
sion making in water management, disaster mitigation, and
better climate adaptation.
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