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The hindcast data of Pusan National University coupled general circulation model
(PNU CGCM), a participant model of the Asia-Pacific Economic Cooperation Cli-
mate Center (APCC) Multi-Model Ensemble Climate Prediction System, and
August–October sea-surface temperature (SST) in the northern Barents–Kara Sea
(BKI) and the sea-ice extent (SIE) in the Chukchi Sea (East Siberian Sea index
[ESI]) are used for predicting 20 × 20-km-resolution anomalous surface air tem-
perature at 2-m height (aT2m) over Mongolia for boreal winter. For this purpose,
area-averaged surface air temperature (TI) and sea-level pressure (SLP) over Mon-
golia are defined. Then four large-scale indices, TImdl and SHImdl obtained from
PNU CGCM, and TIMLR and SHIMLR obtained from multiple linear regressions on
BKI and ESI, are incorporated using the artificial neural network (ANN) method
for the prediction and statistical downscaling to obtain the monthly and seasonal
20 × 20-km-resolution aT2m over Mongolia in winter. An additional statistical
method, which uses BKI and ESI as predictors of TI and SHI together with
dynamic prediction by the CGCM, is used because of the relatively low skill of
seasonal predictions by most of the state-of-the-art models and the multi-model
ensemble systems over high-latitude landlocked Eurasian regions such as Mongo-
lia. The results show that the predictabilities of monthly and seasonal 20 × 20-km-
resolution aT2m over Mongolia in winter are improved by applying ANN to both
statistical and dynamical predictions compared to utilizing only dynamic predic-
tion. The predictability gained by the proposed method is also demonstrated by the
probabilistic forecast implying that the method forecasts aT2m over Mongolia in
winter reasonably well.
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1 | INTRODUCTION

The climate of Mongolia, a landlocked country located in
the middle of the Asia, is characterized by a short dry sum-
mer and a long severe cold winter (MARCC, 2009). The
winter climate is mainly influenced by the Siberian high
(SH; e.g., Mijiddorj, 1999; Panagiotopoulos et al., 2005),

which is a dominant circulation system over the Eurasian
continent in winter. During this season, a severe cold surge
named Dzud often hits Mongolia and causes extensive dam-
age, mainly to livestock. Dzud prevents the livestock from
grazing, leading to starvation (Chogsom, 1964; Namkhai
and Mijiddorj, 1986; Natsagdorj, 2000). In Mongolia,
although heavy snows are rare, cold surges are more
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frequent in winter (Natsagdorj and Dulamsuren, 2001).
Among the natural disasters occurring in Mongolia, loss of
livestock due to Dzud is the most overwhelming. Total live-
stock losses due to Dzud from 2004 to 2015 exceeded
10 million according to the National Agency for Meteorol-
ogy and Environmental Monitoring (NAMEM). During this
12-year period, Dzud accounted for 92% of the total natural
disasters in Mongolia and caused enormous socio-economic
damage in Mongolia due to the economy’s strong depen-
dence on the livestock industry. Seasonal forecasting over
the region is, therefore, vitally important for stock farmers
and government decision makers to prepare for the severe
cold waves such as Dzud in the forthcoming winter.

Seasonal forecasting by numerical modelling is limited
because of the atmosphere’s chaotic nature (e.g., Derome
et al., 2005) and the complexity of the climate system
(e.g., Ahn and Lee, 2016). Particularly, climate prediction
over inland continental regions such as Mongolia is one of
the most challenging issues for state-of-the-art meteorology
due to the limitations of current observation that hinder our
understanding of the interaction between land surface and
atmosphere and due to the difficulties in modelling the com-
plex and inhomogeneous distribution of the terrestrial sur-
face in detail.

Meehl (1995) claimed that the coupled general circulation
model (CGCM) is the ultimate tool for predicting the long-
term weather and climate. Thus, in spite of their relatively
low climate prediction skill over continents, state-of-the-art
CGCMs are still widely used for seasonal forecasting in many
meteorological research centres and laboratories, such as the
National Centers for Environmental Prediction (NCEP; Toth
et al., 2001), the European Centre for Medium-Range
Weather Forecast (ECMWF; Anderson et al., 2007), the
Asia-Pacific Economic Cooperation Climate Center (APCC;
Lee et al., 2013; Lee et al., 2014) and Pusan National Univer-
sity (PNU; Sun and Ahn, 2014; Kim and Ahn, 2015).

Even though the horizontal resolutions of CGCMs are
relatively coarse compared to regional climate models, in
general, CGCMs can present the local climate to some extent
because they are believed to capture the general features of
the observed continental-scale atmospheric circulation pat-
terns (e.g., Ahn and Kim, 2014; Scaife et al., 2014; Sun and
Ahn, 2014). Hence, the CGCM outputs can be localized into
the regional scale using dynamical (e.g., Im et al., 2008; Bat-
bold et al., 2011) or statistical downscaling techniques such
as multiple linear regression (MLR), canonical correlation
analysis and singular value decomposition (Wilks, 1995;
Henrik et al., 1999; Schoof and Pryor, 2001; Sun and Chen,
2012), as well as artificial neural networks (ANN; Schoof
and Pryor, 2001; Coulibaly and Dibike, 2005) and genetic
algorithms (Ahn and Lee, 2016).

In this study, the ANN method is applied to the hindcast
data of PNU CGCM and to the proceeding autumn sea-
surface temperature (SST) and sea-ice extent (SIE) which

strongly affect the subsequent winter climate of Mongolia
for the downscaled prediction of the 20 × 20-km-resolution
monthly mean air temperature at 2-m height (T2m) over
Mongolia in winter. This statistical method is used to correct
the CGCM prediction using statistical correlation between
the predictor of the proceeding season and Mongolian winter
temperature, as well as to downscale the coarse resolution
surface temperature to a high-resolution one.

Section 2 introduces the study data. Section 3 describes
the large-scale climate indices and factors affecting the Mon-
golian winter climate. Section 4 introduces the method to
produce high-resolution boreal winter temperature prediction
using various climate indices obtained from CGCM predic-
tion and observation. The results and verification of the pre-
diction are presented in section 5. Finally, the summary and
conclusion are provided in section 6.

2 | DATA

The monthly data of the National Centers for Environmental
Protection/National Center for Atmospheric Research (NCEP/
NCAR) reanalysis (hereafter RA2) spanning 1981–2015
(Kanamitsu et al., 2002) were used as observations. To recon-
cile the horizontal resolution of RA2 to PNU CGCM outputs,
RA2 is regridded using ESMF_regrid (NCL, 2016).

Monthly mean 20 × 20-km-resolution T2m over Mongo-
lia produced by Gerelchuluun and Ahn (2014) is utilized as
the reproduced observation. Following Gerelchuluun and
Ahn (2014), the data are downscaled from coarse resolution
of RA2 to 20 × 20 km resolution by using a dynamical and
statistical method considering the effect of temperature
inversion. Specifically, the systematic bias induced by
dynamical downscaling simulated by the Weather Research
and Forecasting (WRF) model with the boundary condition
of RA2 is corrected by using a statistical method. Consider-
ing that the bias can be divided into the mean and perturba-
tion parts (Ahn et al., 2012), the former is corrected using a
weighting function with a so-called “inversion correction”
that considers the effect of temperature inversion when the
inversion occurs in the lower atmosphere. The perturbation
part of the bias is corrected by using the self-organizing
maps (SOM) method. For more detail, refer to Gerelchuluun
and Ahn (2014).

The observed monthly mean SST and SIE are extracted
from the Research Data Archive at the NCAR for the period
1981–2015 (Rayner et al., 2006). In particular, autumn SST
and SIE in the northern Kara Sea and Chukchi Sea, respec-
tively, are used for predicting the large-scale climate indices,
together with the CGCM prediction data.

Ten-ensemble mean monthly averaged PNU CGCM
hindcast data are used for the boreal winter climate of Mon-
golia. The PNU CGCM, having T42 spectral horizontal res-
olution for the atmospheric component and 0.7�, 1.4� and
2.8� resolutions in the meridional direction below 30�, at
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mid-latitude (30�–60�) and at higher latitudes (>60�) for the
oceanic component, respectively, is used to generate
3-month lead hindcasts. A detailed description of PNU
CGCM, a participant model of the APCC multi-model
ensemble climate prediction (Ahn and Kim, 2014; Sun and
Ahn, 2014; Kim and Ahn, 2015), is presented in Kim and
Ahn (2015). The ensemble members are produced based on
a time-lagged method (Brankovic et al., 1990) and the initial
conditions of each ensemble member are taken from 10 dif-
ferent days of November of each year from 1981 to 2014 for
December (~0.5 month lead), January (~1.5 month lead) and
February (~2.5 month lead) predictions. The integrations are
performed at both PNU and NAMEM.

3 | LARGE-SCALE INDICES AND
MONGOLIAN CLIMATE

Winter mean T2m and sea-level pressure (SLP) for
1981–2015 are shown in Figure 1. Although the regional
distribution of T2m over Mongolia is complex and highly
nonlinear (Gerelchuluun and Ahn, 2014), the local climate
condition is mainly influenced by and related to the large-
scale climate (Orlanski, 1975; Wigley et al., 1990). Thus, in
an attempt to relate the large-scale climate variability to the
local scale one, the area-averaged T2m (87�–121�E and
40�–53�N) and mean SLP (80�–120�E and 40�–65�N; see

Figure 1) are defined as the temperature index (TI) and the
SH index (SHI), respectively. These indices are used for the
statistically downscaled 20 × 20-km-resolution T2m.

3.1 | Temperature index

The area-averaged T2m from RA2 is defined as the observed
air temperature index (TIobs). The ensemble mean of hind-
casted T2m from PNU CGCM averaged over the same
domain is also defined as TImdl.

Figure 2 shows the horizontal distribution of the simple
linear regression (SLR) coefficient of monthly mean T2m
anomaly (aT2m) on 20 × 20 km resolution over Mongolia
against TIobs during the winters of 1981/1982–2014/2015.
According to the figure, all of the coefficients are statisti-
cally significant (p < .01), except some areas in the eastern
parts of Mongolia during December and January (p < .05).
In addition, the area-averaged coefficients of determinant
based on SLR for each month and boreal winter (DJF) are
between 0.55 and 0.74, indicating that more than half of the
total area-averaged variation in aT2m over Mongolia during
DJF and individual months can be largely explained by the
linear relationship with TIobs.

3.2 | SH index

The SH, as shown in winter mean SLP of Figure 1, is a
large-scale high-pressure system over the Eurasian continent
centred at around Mongolia. As for the potential roles of the
SH in winter climate over Asia, Ding and Krishnamurti
(1987) and Park et al. (2014) attributed the severe cold
waves to the SH and its movement to the cold surges intrud-
ing into the lower latitudes, generating stormy weather in
southern China, the Indochina Peninsula, the Maritime Con-
tinent and the Southern Hemisphere tropics (Chang et al.,
2003; 2005). Following Panagiotopoulos et al. (2005) and
Wu et al. (2006), the SHI from RA2 (SHIobs) is defined by
averaging monthly mean SLP over the area (80�–120�E and
40 –65 N; see Figure 1) and normalized by one standard
deviation for the winters of 1981/1982–2014/2015. The
ensemble mean of hindcasted SLP from PNU CGCM aver-
aged over the same domain is also defined as SHImdl.

The SLR coefficients of 20 × 20 km aT2m against
SHIobs are illustrated in Figure 3. Except in the northeastern
part of Mongolia, the coefficients are overall statistically sig-
nificant (p < .05). In addition, approximately 35–43% of the
area-averaged total variation of aT2m over Mongolia is
explained by SHIobs. This implies that the regional variance
of 20 × 20 km aT2m over Mongolia can be represented rea-
sonably well by both SHIobs and TIobs.

3.3 | Arctic impact on Mongolian climate: Statistical
correction

The predictability of dynamical models is mostly due to their
high skill level in the tropics (Derome et al., 2005; Lin

FIGURE 1 Winter climatologies of T2m (colour, �C) and SLP (contour,
hPa) from observation (1981–2015). Rectangle areas indicate domains for
TI and SHI [Colour figure can be viewed at wileyonlinelibrary.com]
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et al., 2005; Kim and Ahn, 2015). Most models have rela-
tively good skill in predicting tropical SST anomalies, partic-
ularly equatorial Pacific SST anomalies. However, the skill
of seasonal predictions by most of the state-of-the-art models
and multi-model ensemble systems over the central Asia
region (Min et al., 2014; Kim et al., 2016) is relatively low.
Thus, the dynamic prediction needs to be corrected statisti-
cally, considering our current predictability over the high-
latitude landlocked Eurasian region such as Mongolia.

Many studies have pointed out the significance of the
Arctic impact on the northern Eurasia climate variability.
Particularly, it has been shown that a decrease in the autumn
East Arctic SIE tends to strengthen the SH and East Asia
winter monsoon (e.g., Honda et al., 2009; Wu et al., 2011).
Also, several studies (e.g., Hall et al., 2015; Kryjov, 2015)
have claimed that the autumn positive SST anomalies in the
East Arctic tend to be followed by the negative phase of the

Arctic Oscillation, an enhanced SH and negative temperature
anomalies in the northern Eurasia in winter.

Climatological SIE in the boreal early autumn (August,
September and October [ASO]; Figure 4a) and correlation
coefficients between observed ASO SST and DJF TIobs
(Figure 4b) and SHIobs (Figure 4c), and the correlation coeffi-
cients between observed ASO SIE in the Arctic Sea and DJF
TIobs (Figure 4d) and SHIobs (Figure 4e) are shown in
Figure 4. Figure 4b,c,d,e indicates that winter TIobs and
SHIobs are, respectively, significantly related with ASO SST
(ASO SIE) linearly in the northern Kara Sea and Chukchi
Sea, the areas adjacent to the sea ice margin (Figure 4a). In
particular, ASO SST is closely related with both DJF TIobs
and SHIobs in the area A (75�–82�N and 34�–94�E), and ASO
SIE is closely related with both DJF TIobs and SHIobs in the
area P (73�–79�N and 170�E–160�W). The area A is climato-
logically opened from ice during ASO, while the area P is

FIGURE 2 Regression of aT2m (20 × 20 km grid) on TIobs stippling with colours indicates statistical significances at 90% (green), 95% (black) and 99%
(white) levels. R2 means the area-averaged coefficient of determinant [Colour figure can be viewed at wileyonlinelibrary.com]
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covered with ice during ASO. Considering both the correla-
tions coefficients and ice coverages, we defined two ASO
indices, the Barents–Kara Sea index (BKI) and the East Sibe-
rian Sea index (ESI), as SST and SIE anomalies averaged
over the areas A and P, respectively, in order to analyse the
relationship between the two ASO indices and the seasonal
mean DJF TIobs and SHIobs series, and further to make use of
the relationship in the prediction of T2m in Mongolia. These
indices are independent of each other according to an inde-
pendency test (i.e., the correlation coefficient between them is
less than −0.04, which is statistically insignificant).

Thus, the contributions of impacts from these two ASO
SST and SIE anomalies, BKI and ESI, on the anomalies of
DJF temperature in Mongolia and the SH can be effectively
combined by using MLR. Details of the MLR analysis of TI
and SHI on the BKI and ESI, referred to as TIMLR and
SHIMLR, respectively, are shown in Table 1. Both TIobs and
SHIobs are significantly (p < .05) related to both of the ASO

northern Kara Sea SST and Chukchi Sea SIE anomalies.
TIMLR and SHIMLR are supported by the MLR results with
the significance of the variances associated with the linear
model against variances of residuals exceeding 99%, as shown
by analysis of variance (ANOVA; Table 2). The determinant
coefficients shown in Table 2 indicate that 66 and 44% of the
total variance for TIobs and SHIobs, respectively, can be
explained by the MLR model. This MLR analysis is per-
formed on the dependent variables and the results suggest that
the ASO BKI and ESI can be used as additional predictors
together with CGCM prediction for the subsequent wintertime
temperature anomalies in Mongolia.

4 | METHODS

ANN, a nonlinear statistical technique (Benestad, 2001;
Goyal et al., 2012) applied for converting large-scale

FIGURE 3 Regression coefficients of aT2m (20 × 20 km grid) on the SHIobs. Stippling with colours indicates statistical significances at 90% (white), 95%
(red) and 99% (black) levels. R2 means the area-averaged coefficient of determinant [Colour figure can be viewed at wileyonlinelibrary.com]
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variables into local-scale variables in some studies
(e.g., Chadwick et al., 2011), is also used in this study. Mul-
tilayer perceptron (Bishop, 1995), which is a supervised

learning method, is utilized for the statistical downscaling of
the large-scale indices TImdl, SHImdl, TIMLR and SHIMLR to
20 × 20 km horizontal resolution T2m. This is one of the
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FIGURE 4 Climatological SIE in the boreal early autumn (ASO) (a) and correlation coefficients between observed ASO SST and DJF TIobs (b), and SHIobs
(c), and the correlation coefficients between observed ASO SIE and DJF TIobs (d), and SHIobs (e) during the period 1981–2014. Stippling with colours
indicates statistically significant levels at 90% (black), 95% (red) and 99% (white) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 MLR coefficients and their statistical characteristics for TI and SHI in DJF based on SST and SIE indices. BKI and ESI are SST and SIE
anomalies averaged over the rectangular areas A (75�–82�N and 34�–94�E) and P (73�–79�N and 170�E–160�W), respectively

Model

TIobs SHIobs

Coef. SE t Sig. Coef. SE t Sig.

BKI −0.75 0.12 −6.39 3.5 × 10−7 0.61 0.15 4.02 3.3 × 10−4

ESI 0.69 0.16 4.26 1.7 × 10−4 −0.58 0.21 −2.78 8.8 × 10−3

TABLE 2 ANOVA for TI and SHI based on MLR against SST and SIE indices. Res, df and F stand for residual between observation and simulation, degree
of freedom and F value for the model, respectively

Model

TIMLR SHIMLR

Sum of squares df Mean square F Sig. Sum of squares df Mean square F Sig.

Regrssion 23.6 2 11.8 30.6 4.5 × 10−8 15.8 2 7.90 12.43 1.1 × 10−4

Residual 11.9 31 0.38 19.8 31 0.64

Total 35.5 33 1.1 35.7 33 1.1

R2 0.66 0.44
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most popular methods and known as a flexible type of neural
network (Ahmed et al., 2015). The ANN consists of input,
hidden and output layers and has an activation function
translating the input signal to the output one. The function
makes the network nonlinear by determining the different
weights between layers. Among the several activity func-
tions, a hyperbolic tangent is used in this study. This func-
tion is commonly used in many studies because of its
flexibility and fast convergence speed (Bhadeshia, 1999).

The ANN is performed for aT2m of 20 × 20 km horizontal
resolution over Mongolia using TImdl, SHImdl, TIMLR and
SHIMLR as the input layers with a leave-one-out cross-
validation (Michaelsen, 1987).

Although the 20 × 20 km aT2m is deterministically
obtained with the leave-one-out cross-validation, a probabilis-
tic forecast is also performed for regional winter temperature
over Mongolia. Richardson (2006) and Alessandri et al.
(2011) introduced the advantage of probabilistic prediction
and insisted that the seasonal climate predictions need to be
probabilistic for more detailed information to the end users.
Moreover, probability distribution functions (PDFs) for
observed and predicted aT2m exhibit a close resemblance
with a normal distribution (Figure 5). This implies that the
basic characteristics of the observation and prediction are sim-
ilar to each other. Thus, the boundaries of the three equiproba-
ble categories (below, near and above normal) are defined in
terms of the terciles of the normal distribution (Kharin and
Zwiers, 2003). Since PDFs for observed and predicted aT2m
have a normal distribution, the cumulative normal distribution
function is evaluated to convert the deterministic forecast to a
probabilistic forecast. Hence, the probabilities of aT2m pre-
diction depend on the output of the ANN and the stochastic
noise between predicted T2m and observed T2m.

5 | VERIFICATION

5.1 | Hindcast of PNU CGCM

The PNU CGCM T2m and SLP climatologies closely
resemble the observations (not shown). Monthly and sea-
sonal ensemble mean time series of TImdl and SHImdl are

FIGURE 5 PDFs of the observed (green) and predicted (red) aT2m during
winter months over Mongolia. The Xa and Xb are plus and minus half of
one standard deviation of the observed T2m, respectively [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 6 Time series of observed and predicted TI derived from PNU CGCM with November initial condition. Solid black and red curves are observed
and ensemble mean TI, respectively, and other colours with corresponding marks denote individual members. CC is correlation coefficient between observed
and ensemble mean TI. The asterisk (*) indicates statistical significance at 90% level [Colour figure can be viewed at wileyonlinelibrary.com]
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correlated positively with the TImdl time series of TIobs and
SHIobs (Figures 6 and 7), respectively. This implies that the
model has some ability to predict large-scale indices such as
TImdl and SHImdl with positive correlation within the range
of 0.17–0.36. The correlation coefficients of each index
decrease with increasing lead time, in general. Although all
the coefficients between observation and hindcast of
monthly and seasonal means of each index remain positive,
only the correlation coefficients of seasonal mean DJF TI
and DEC SHI exceed the 90% confidence level.

Even though the range of the correlation coefficients is
similar to most of the state-of-the-art models and the multi-
model ensemble predictions for the central Asia region (Min
et al., 2014; Kim et al., 2016), this result indicates that the
skill of seasonal predictions over the region is less reliable
and not enough to meet the demand of the people and
decision-makers of the region. Therefore, the aforementioned
statistical approach using the ANN is necessary for better and
horizontally finer prediction over the Mongolia region.

5.2 | ANN prediction

5.2.1 | TIANN and SHIANN predictions

The leave-one-out cross-validation is applied to the verifica-
tion of all predictions, considering relatively short sample
period of this study (1981–2015), that is described below.
The large-scale indices TIANN and SHIANN and the
20 × 20-km-resolution T2m are predicted by means of the
ANN with TImdl and SHImdl, and TIMLR and SHIMLR are
incorporated as input layers. Anomaly correlation coefficients
(ACC; WMO, 2002) between TIobs (SHIobs) and outputs from
TImdl (SHImdl), TIMLR (SHIMLR) and TIANN (SHIANN) are
listed in Table 3. The temporal correlation coefficients
between the TIobs (SHIobs) series and the estimated series are
the highest when the ANN is used for most months and DJF

except TIANN in January and SHIANN in February and DJF.
However, the ACC based on ANN in all months and DJF are
statistically significant (p < .1). The mean square skill scores
(MSSS; WMO, 2002) for both large-scale indices are also
presented in Table 3, which indicates that TIANN and SHIANN
outperform the other seasonal predictions except TIANN in
January and SHIANN in February and DJF.

5.2.2 | Predictions of the 20 × 20-km-resolution T2m
anomalies

Verification of the predictions of T2m anomalies at each
20 × 20 km grid-point over Mongolia is performed in cross-

FIGURE 7 Same as Figure 6 but for SHI [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 ACC and MSSS between observed and predicted large-scale
indices. Symbols *, ** and *** indicate statistical significance at 90, 95 and
99% confidence levels, respectively

Index Month TImdl/SHImdl TIMLR/SHIMLR TIANN/SHIANN

ACC

TIobs DEC 0.25 0.41** 0.45**

JAN 0.17 0.41** 0.40**

FEB 0.19 0.53*** 0.54***

DJF 0.36** 0.75*** 0.76***

SHIobs DEC 0.30* 0.32* 0.35**

JAN 0.33* 0.34** 0.34**

FEB 0.20 0.42** 0.33*

DJF 0.26 0.62*** 0.60***

MSSS

TIobs DEC 0.04 0.16 0.21

JAN −0.01 0.16 0.15

FEB −0.00 0.29 0.30

DJF 0.12 0.59 0.61

SHIobs DEC 0.09 0.08 0.11

JAN 0.12 0.13 0.11

FEB 0.03 0.11 0.06

DJF 0.06 0.31 0.33
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validation mode. The four predictors, TImdl, SHImdl, TIMLR

and SHIMLR, predicted by the dynamical and statistical
models are placed at the input layers of the ANN. The
results are interpreted in both deterministic and probabilis-
tic forms. For the latter, the predicted 20 × 20 km T2m
values are converted to tercile probabilities. For verifica-
tion assessments we use ACC for deterministic forecasts
and ranked probability skill score (RPSS) for probabilistic
forecasts (Wilks, 1995).

The ACC between observed and predicted aT2m is
shown in Figure 8. The correlations are all positive through-
out the domain. However, the coefficients are relatively low
over the southeastern Mongolia throughout the whole
months and DJF and over the northeastern border of the
country in December and January. The deterministic forecast
of T2m demonstrates the high skill over most of Mongolia
when ANN is used. For RPSS, a value of +1 indicates a per-
fect forecast, while a negative value means that the predic-
tion skill is worse than the climatological forecast. In

Figure 9, although RPSS is generally better than the climato-
logical forecast, negative RPSS values do exist in some
regions of the domain. The ACC is higher in most of west
and south Mongolia, whereas RPSS is higher in central and
east Mongolia, especially in January and February, because
the variation of T2m is relatively larger than that in eastern
Mongolia. The ACC shows linear relationships between
forecast and observations, while RPSS represents nonlinear
relationships and skill with respect to the climatological fore-
cast. Therefore, there is no close qualitative coincidence
between Figures 8 and 9.

6 | SUMMARY AND CONCLUSION

In this study, the hindcast data of PNU CGCM, a partici-
pant model of the APCC multi-model ensemble climate
prediction system, and ASO SST and SIE in the northern
Kara Sea and Chukchi Sea, respectively, are used for

FIGURE 8 ACC between observed and predicted 20 × 20 km aT2m by ANN. CC stands for the area-averaged correlation coefficients [Colour figure can
be viewed at wileyonlinelibrary.com]
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predicting 20 × 20-km-resolution aT2m over Mongolia for
boreal winter. For this purpose, four area-averaged large-
scale climate indices, TImdl, SHImdl, TIMLR and SHIMLR,
are calculated using the CGCM and statistical method.
The 20 × 20-km-resolution aT2m over Mongolia is pre-
dicted in terms of the large-scale indices under the
assumption that the spatial distribution of T2m over Mon-
golia is directly influenced by the large-scale climate vari-
ability, although it is highly complicated by the complex
geography.

The dynamical integration is performed using PNU
CGCM for 0.5–2.5-month lead hindcasts for boreal winter
with 10 ensemble members, based on a time-lagged method,
from November of every year during the period 1981–2014.
From the outputs of PNU CGCM, TImdl and SHImdl are
acquired as the large-scale climate indices. Although the
relationships between the hindcasted (TImdl and SHImdl) and
observed (TIobs and SHIobs) indices during each month of
winter and each season are consistent, the correlation does

not indicate that the dynamic prediction is capable of being
used for operational seasonal forecast. In fact, even most of
the state-of-the-art models and the multi-model ensemble
prediction systems have relatively poor predictability in
high-latitude landlocked regions such as the Eurasian conti-
nent (Min et al., 2014; Kim et al., 2016), compared to ocean
areas. Thus, applying the result that both winter TIobs and
SHIobs are significantly linearly related with ASO SST and
SIE in the northern Kara Sea and Chukchi Sea, respectively,
which are areas adjacent to the sea ice margin, MLR is per-
formed for TIMLR and SHIMLR for each month and season
using BKI and ESI indices. BKI and ESI are independent of
each other and lead the targeted months for prediction by
2–6 months.

Then, the ANN method is applied to these four large-
scale indices for the prediction and the statistical downscal-
ing to 20 × 20-km-resolution aT2m over Mongolia. The
ANN is performed with leave-one-out cross-validation for
aT2m by putting the four large-scale indices, TImdl, SHImdl,

FIGURE 9 RPSS of the aT2m predictions. The avg stands for area-averaged RPSS [Colour figure can be viewed at wileyonlinelibrary.com]
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TIMLR and SHIMLR, into the input layers. In setting up the
ANN, monthly mean 20 × 20-km-resolution aT2m pro-
duced by Gerelchuluun and Ahn (2014) is utilized as
observations.

The deterministic and probabilistic forecasts of aT2m
over Mongolia are also evaluated. The probabilistic forecast
is made from the deterministic form using the cumulative
distribution function because the PDFs of the observed and
predicted aT2m have similar normal distributions. The ACC
and RPSS are also evaluated to validate the predictability of
the deterministic and probabilistic forecasts, respectively.
The results of both the deterministic prediction and the prob-
abilistic prediction of T2m demonstrate that the method used
in this study is sufficiently skilful for predicting the boreal
winter temperature of 20 × 20-km-resolution over Mongo-
lia. Our results show that the predictabilities of monthly and
seasonal 20 × 20-km-resolution aT2m over Mongolia in
winter are improved by applying the ANN method to TImdl,
SHImdl, TIMLR and SHIMLR, compared to the case when only
dynamic prediction is performed. Furthermore, according to
the ACC and MSSS analyses, both TIANN and SHIANN also
generally outperform the other predictions, such as TImdl,
SHImdl, TIMLR and SHIMLR.

Because the ANN is a nonlinear statistical method, it is
difficult to distinguish between the contribution of the
CGCM result (TImdl, SHImdl) and the contribution of the
observed SST and SIE (TIMLR, SHIMLR) to TIANN. How-
ever, given the relationship between the Mongolian winter
climate and the CGCM prediction (Table 3), we can infer
that TIANN must be more influenced by TIMLR and SHIMLR,
although TImdl and SHImdl still exert a reasonable
contribution.
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