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Abstract
The quantitative assessment of the uncertainty components of future climate projections is critical for decision-makers and 
organizations to establish climate change adaptation and mitigation strategies at regional or local scales. This is the first study 
in which the changes in the uncertainty components of future temperature and precipitation projections are quantitatively 
evaluated using multiple regional climate models over East Asia, vulnerable to future climate change. For temperature, 
internal variability and model uncertainty were the main factors affecting the near-term projections. The scenario uncertainty 
continued to increase and was estimated to be the dominant factor affecting the uncertainty after the mid-term projections. 
Although precipitation has the same main uncertainty factors as the temperature in the near-term projections, it consider-
ably differs from temperature because the internal variability notably contributes to the fraction to the total variance, even 
in the long-term projections. The internal variability of the temperature and precipitation in the near-term projections were 
predicted to be larger in Korea than that in East Asia. This was confirmed by regional climate models as well as previous 
studies using global climate models as to the importance of internal variability at smaller regional scales during the near-
term projections. This study is meaningful because it provides new possibilities with respect to the consideration of climate 
uncertainties to the establishment of climate change policies in more detail on the regional scale.
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1  Introduction

Climate change is causing notable alterations in the fre-
quency, intensity, spatial extent, duration, and timing of 
weather and climate extremes. Consequently, unprecedented 
occurrences of climate extremes have been observed world-
wide (IPCC 2012). Therefore, a comprehensive understand-
ing of these extremes at regional spatial scales is essential for 
effectively coping with natural disasters. Effective climate 
change mitigation and adaptation strategies require reliable 
future climate projections. However, despite considerable 
advancements in climate modeling, a large range of plau-
sible future climate projections remains as “the uncertainty 
range” (IPCC 2013), reducing confidence in future projec-
tions (Hawkins and Sutton 2009, 2011) making decision-
making difficult.

To obtain more reliable information on future climate 
projections, uncertainty components and their effects should 
be quantitatively assessed. This is because it is important 
for decision-makers and organizations to establish climate 
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change adaptation and mitigation strategies, especially at 
regional or local scales. Furthermore, future climate uncer-
tainty has important implications for climate change adapta-
tion in various application sectors. This is because a more 
considerable uncertainty will lead to higher costs and chal-
lenges related to the management of climate change adap-
tation (Giorgi 2010). In other words, reducing the uncer-
tainty according to the future climate could potentially 
bring enormous economic value. Therefore, if national and 
local governments establish adaptation policies for various 
fields vulnerable to future climate change by understanding 
the uncertainties of future climate projections, it will help 
reduce unnecessary costs and prevent disasters (Hawkins 
and Sutton 2009). Because of its large population and exten-
sive industrialized areas, East Asia is vulnerable to future 
increases in weather and climate extremes as well as sea-
level rise due to global warming (IPCC 2012). Therefore, 
the importance of climate change adaptation and mitigation 
is emphasized in this region, which requires a better under-
standing of the uncertainty of future climate projections.

Many studies assessing uncertainties of future climate 
change have been carried on at the global scale or European 
region (Knutti et al. 2008; Hawkins and Sutton 2009, 2011; 
Yip et al. 2011; Booth et al. 2013; Northrop and Chandler 
2014; van Pelt et al. 2014; Chen and Sun 2015; Hawkins 
et al. 2016; Woldemeskel et al. 2016; Evin et al. 2019, 2021; 
Fernández et al. 2019; von Trentini et al. 2019; Lehner et al. 
2020; Zhou et al. 2020). However, very few comprehensive 
studies have been conducted regarding the uncertainty of 
climatic projections over East Asia. Furthermore, in most 
previous studies, global climate models (GCMs) were 
applied, which are limited to the detailed assessment of the 
uncertainty of future climate change at the regional scale.

To resolve insufficient GCM simulations with a coarse 
spatial resolution at the regional scale, the Coordinated 
Regional Climate Downscaling Experiment (CORDEX) 
project, covering 14 regional domains, has been established 
by the World Climate Research Programme (WCRP). This 
project produces diverse regional climate models (RCMs) 
to provide quality-controlled information about regional 
climate changes (Giorgi et al. 2009; Park et al. 2021; http://​
wcrp-​cordex.​ipsl.​jussi​eu.​fr/). For the East Asia domain, 
RCMs with various spatial resolutions forced by various 
GCMs produced by the CORDEX East-Asia project team 
have been applied to several future climate information 
studies for East Asia (Kim et al. 2014; Park et al. 2016, 
2020a, 2021; Lee et al. 2019; Park and Min 2019; Kim et al. 
2020a, b) and the Korean Peninsula regions (Ahn et al. 2015; 
Cha et al. 2016; Choi et al. 2016; Oh et al. 2016; Suh et al. 
2016; Lee et al. 2017; Kim et al. 2018). In phase II of the 
CORDEX-East Asia project, climate change scenarios for 
RCMs forced by various GCMs have been produced, which 
exhibited a higher spatial resolution (25-km) than those of 

phase I (50-km). Therefore, to obtain detailed and reliable 
future climate change information for the East Asia domain, 
the quantitative assessment of the uncertainty components 
for future climate projections from various RCMs produced 
by the CORDEX-East Asia project team is necessary.

This is the first study in which the changes in the uncer-
tainty components of future temperature and precipitation 
projections were quantitatively evaluated on the regional 
scale in East Asia by using high-resolution multi-RCM 
datasets. In other words, this study is meaningful in that it 
provides a new possibility for considering climate uncertain-
ties to the establishment of climate change policies in more 
detail on the regional scale, in contrast to spatially limited 
studies of the uncertainty of future projections using GCMs. 
The remainder of this paper is structured as follows. The 
observational data, model simulations, and main analysis 
methods are introduced in Sect. 2. The fractional uncertain-
ties and the fraction of each component to the total variance 
for the future temperature and precipitation projections over 
East Asia for the bias-corrected RCM datasets are assessed 
in Sect. 3. Finally, conclusions and discussions are presented 
in Sect. 4.

2 � Data and methods

2.1 � Observational data and model simulations

We selected the land area over East Asia (100° E–150° E 
and 20° N–50° N) as the analysis domain, which includes 
Korea, Japan, China (except for the western arid region), and 
parts of Mongolia and Russia. The major analysis variables 
are the daily mean surface temperature (TAS) and daily pre-
cipitation (PR). The TAS and PR were evaluated as annual 
mean of the daily value. Moreover, they were assessed in 
the boreal summer (June–July–August) and boreal winter 
(December–January–February), which are the character-
istic seasons in East Asia. The Asian Precipitation-Highly 
Resolved Observational Data Integration Toward Evaluation 
(APHRODITE) reanalysis dataset was used as the reference 
data for the RCM bias correction (Yatagai et al. 2012), which 
will be presented in Sect. 2.2. Multiple RCM datasets forced 
by three Climate Model Intercomparison Project phase 5 
(CMIP5) GCMs [HadGEM2-AO (Hadley Centre Global 
Environmental Model version 2 Atmosphere and Ocean), 
MPI-ESM-LR (Max Planck Institute Earth System Model 
Low-Resolution), and GFDL-ESM-2M (GFDL Earth Sys-
tem Model 2M)] included in the CORDEX-East Asia phase 
II project were used to estimate the uncertainties of future 
climate projections in this study. The selected three GCMs 
show more accurate simulations of the East Asian climate 
compared to other CMIP5 GCMs (Martin et al. 2011; Baek 
et al. 2013; Sperber et al. 2013; Yoon et al. 2015; Guo et al. 
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2016). In this study, a total of nine RCMs from five different 
types were applied. The configurations of nine RCMs are 
presented in Table 1. The HadGEM3-RA (Hadley Centre 
Global Environmental Model version 3 Regional Climate 
Model) and CCLM (COSMO-CLM) were forced by the 
HadGEM2-AO and MPI-ESM-LR GCMs. The SNURCM 
(Seoul National University Regional Climate Model) was 
forced by the MPI-ESM-LR GCM, while WRF (Weather 
Research and Forecasting model) was forced by the MPI-
ESM-LR and GFDL-ESM-2 M GCMs. Lastly, RegCM4 
(Regional Climate Model 4) was forced by the HadGEM2-
AO and GFDL-ESM-2 M GCMs. The horizontal spatial 
resolution of all nine RCMs applied in this study is 25 km. 
Four non-hydrostatic (HadGEM3-RA, CCLM, SNURCM, 
and WRF) and one hydrostatic (RegCM4) RCM types were 
used as dynamic frameworks for climate experiments over 
East Asia. The historical experiment for 1981–2005 and 
Representative Concentration Pathway (RCP) 2.6 and RCP 
8.5 scenarios for 2006–2099 were applied in this study. 
The RCP2.6 and RCP8.5 scenarios are bipolar in the RCP 
greenhouse gas emission scenarios. Amongst the RCP sce-
narios, the RCP2.6 scenario is the closest to the response 
of the Paris Agreement, and the RCP8.5, ‘the worst sce-
nario’ determined by IPCC (2013) and Hausfather and Peters 
(2020), is a scenario based on which the greenhouse gas 
emissions are maintained at the present level.

2.2 � Analysis methods

2.2.1 � Bias correction

The RCM datasets suitable for simulating the magnitude 
of climate change at the regional scale have systematic 
biases. Because these biases reduce the reliability of future 
climate projections, it is desirable to apply the bias correc-
tion technique to the RCM to remove problems that may 
arise from future climate simulations (Giorgi and Mearns 

1999; Teutschbein and Seibert 2012; Kim et al. 2020a, b; 
Park et al. 2021). Therefore, the bias correction technique 
was applied to all RCMs used in this study to assess the 
uncertainty of future climate change in East Asia. The 
variance scaling (VS) and quantile mapping of the entire 
period (QME) were applied to the TAS and PR for each 
grid, respectively. Then, we applied this to the East Asian 
average for analysis.

The VS method is suitable for the stepwise correction of 
both the mean and variance of TAS time series (Teutsch-
bein and Seibert 2012; Kim et al. 2020b). In the first step, 
the TAS is updated with the help of an additive term based 
on the difference between the long-duration monthly mean 
APHRODITE reanalysis dataset and historical experiment 
datasets. The additive terms are assumed to remain unvar-
ied, even under future conditions.

where �m and (d) are the monthly mean and daily values, 
respectively; the sub- or superscripts *1, *2, or *3 indicate 
the bias-corrected dataset of an intermediate step; and * 
represents the final bias-corrected result. Subsequently, the 
mean-corrected TAS of the historical experiment TAS∗1

Hist
(d) 

and that of the RCP scenarios TAS∗1
RCP

(d) are shifted to a zero 
mean every month:

The standard deviations [σ of the shifted data TAS∗2
Hist

(d) 
and TAS∗2

RCP
(d) ] were then corrected based on the ratio of 

the observed σ value and σ of the historical experiment.

(1)
TAS∗1

Hist
(d) = TASHist(d) + �m

(
TASobs(d)

)
− �m

(
TASHist(d)

)

(2)TAS∗1
RCP

(d) = TRCP(d) + �m

(
Tobs(d)

)
− �m

(
THist(d)

)
,

(3)TAS∗2
Hist

(d) = TAS∗1
Hist

(d) − �m

(
TAS∗1

Hist
(d)

)

(4)TAS∗2
RCP

(d) = TAS∗1
RCP

(d) − �m

(
TAS∗1

RCP
(d)

)

Table 1   Configurations of the RCMs used in this study

HadGEM3-RA CCLM SNURCM WRF RegCM4

GCMs HadGEM2-AO and MPI-
ESM-LR

HadGEM2-AO and 
MPI-ESM-LR

MPI-ESM-LR MPI-ESM-LR and 
GFDL-ESM-2 M

HadGEM2-AO 
and GFDL-
ESM-2 M

Number of grid 
points, lati-
tude × longitude)

251 × 396 251 × 396 260 × 405 250 × 395 249 × 394

Vertical levels 63 eta Hybrid-40 24 sigma 30 eta 23 sigma
Dynamic framework Non-hydrostatic Non-Hydrostatic Non-hydrostatic Non-hydrostatic Hydrostatic
Convection scheme Revised mass flux Tiedtke Kain-Fritch II Betts and Miller MIT-Emanuel
Land surface model Joint UK Land Environment 

Simulator (JULES)
TERRA ML NCAR CLM3 Noah NCAR CLM3.5

Reference Davies et al. (2005) Rockel et al. (2008) Cha and Lee (2009) Skamarock et al. (2005) Giorgi et al. (2012)
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Finally, the σ-corrected TAS is shifted back using the 
corrected mean TAS and Eqs. (7) and (8).

The QME method is suitable for the precipitation. We 
performed pre-processing corrections for days with 0 mm 
precipitation by comparing the empirical cumulative distri-
bution function (ECDF) of observations and models before 
applying the QME method to the cumulative distribution 
function (CDF) for bias correction (Kim et al. 2020b). The 
CDF is based on the generalized extreme value (GEV) dis-
tribution and the variable x is as follows:

where � , � , and � are the location, scale, and shape param-
eters, respectively, which are estimated from the L-moments. 
The CDF of each RCM, estimated using daily precipitation 
values from the historical experiment, is fitted to that of the 
observation dataset (Eqs. (2) and (3)).

where P and F are the precipitation and CDF, respectively.

2.2.2 � Uncertainty decomposition of future climate 
projection

We assessed the spatiotemporal changes in the fractions of 
three uncertainty components to the total variance calculated 
based on the 1981–2005 mean over East Asia using the method 
suggested by Hawkins and Sutton (2009, 2011). Based on this 
method, the rates of change of three spatiotemporal uncer-
tainty components are quantitatively determined (Hawkins 
and Sutton 2009, 2011; IPCC 2013; Lopez-Cantu et al. 2019; 
Zhou et al. 2020): internal variability, model uncertainty, and 
scenario uncertainty. The internal variability, which arises in 

(5)TAS∗3
Hist

(d) = TAS∗2
Hist

(d) ×

[
�m(TASobs(d))

�m(TAS
∗2

Hist
(d))

]

(6)TAS∗3
RCP

(d) = TAS∗2
RCP

(d) ×

[
�m(TASobs(d))

�m(TAS
∗2

RCP
(d))

]

(7)TAS∗
Hist

(d) = TAS∗3
Hist

(d) + �m

(
TAS∗1

Hist
(d)

)

(8)TAS∗
RCP

(d) = TAS∗3
RCP

(d) + �m

(
TAS∗1

RCP
(d)

)

(9)

F(x;𝜇, 𝜎, 𝜉) =

⎧
⎪⎨⎪⎩

exp
�
−exp

�
−

x−𝜇

𝜎

��
, 𝜉 = 0

exp

�
−

�
1 + 𝜉

x−𝜇

𝜎

�−𝜉−1
�
, 𝜉 ≠ 0, 1 + 𝜉

x−𝜇

𝜎
> 0

(10)
P∗
Hist

(d) = F−1
obs

(
FHist

(
P∗1
Hist

(d)|�Hist, �Hist, �Hist

)|�obs, �obs, �obs

)

(11)
P∗
RCP

(d) = F−1
obs

(
FHist

(
P∗1
RCP

(d)|�Hist, �Hist, �Hist

)|�obs, �obs, �obs

)
,

the absence of any radiative forcing from the planet, consists of 
the natural variability of the climate system (e.g., the variabil-
ity of the El Niño–Southern Oscillation, ENSO). Each model 
projection is fitted to a fourth-order polynomial using the least 
squares from 1981 to 2099. The raw projection is as follows:

where the reference value is indicated by i , the fit is rep-
resented by x , and the residual is � . The reference values 
applied were the year 2000. Moreover, the subscripts m , s , 
and t  refer to the model, scenario, and year, respectively. 
Based on Eq. (12), the internal variability ( IV  ) is calculated 
as the variance of the residuals of the fits, which is independ-
ent of the scenario and year. The multi-model mean of these 
variances is considered the internal variability component,

where Nm denotes the number of models and vars,t is the 
variance of the scenarios and year. The parameter IV  
remains constant over time. The model uncertainty (MU) 
of each scenario is estimated from the variance of the dif-
ferent model projection fits. The model uncertainty is the 
response to structural differences due to the scheme and 
parameters applied to the models the same radiative forcing, 
which leads to differences in the simulated climate systems 
among different models under the fixed RCP scenario. The 
multi-scenario mean is applied as an estimate of the model 
uncertainty component,

where Ns indicates the number of RCP scenarios. The sce-
nario uncertainty (SU) , which is related to the anthropogenic 
forcing, can be defined as the spread of projections between 
different RCP scenarios, estimated the variance of the multi-
model mean for scenarios.

Based on the assumption that the three uncertainty com-
ponents are independent, the total variance (T) of the future 
climate change projections and the mean change of all projec-
tions (G) can be expressed as:

(12)Xm,s,t = xm,s,t + im,s + �m,s,t,

(13)IV =
1

Nm

∑
m

vars,t(�m,s,t),

(14)MU(t) =
1

Ns

∑
s

varm(xm,s,t),

(15)SU(t) = vars

(
1

Nm

∑
m

xm,s,t

)

(16)T(t) = IV +MU(t) + SU(t)

(17)G(t) =
1

Ns

∑
m,s

xm,s,t.
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The fraction of each component to the total variance for 
the future projection, as presented (c) and (d) in Figs. 3, 4, 
5 and 6, is calculated as the respective fractions of IV  , 
MU(t) , and SU(t) with respect to T(t) in Eq.  (16) (e.g., 
The fraction of IV =

(
IV

T(t)

)
× 100).

The total fractional uncertainty (FU(t)) for the future pro-
jection with a 90% confidence level can be written as:

The fractional uncertainty of each component for the 
future projection as presented (a) and (b) in Figs. 3, 4, 5 
and 6, is computed by substituting T(t) with IV  , MU(t) , and 
SU(t) , respectively, in Eq. (18).

The signal-to-noise (S/N) ratio is obtained by inverting 
the fractional uncertainty. If the S/N ratio exceeds 1, it indi-
cates that the prediction has excellent value for planning 
purposes (Hawkins and Sutton 2009, 2011). A maximum 
S/N ratio corresponds to a minimum total fractional uncer-
tainty (Hawkins and Sutton 2009).

3 � Results

The temporal changes in the 10-year moving average of 
area-averaged future projections, which are calculated based 
on 1981–2005 mean for the bias-corrected annual and sea-
sonal means from TAS and PR over East Asia, are presented 
in Fig. 1. The thin solid lines indicate each RCM time series, 
and the thick solid lines represent the multi-model ensem-
ble (MME) time series of each RCP scenario used in this 

(18)FU(t) =
1.65

√
T(t)

G(t)
.

study. In the case of TAS, the RCP2.6 scenario is expected to 
remain stable for the annual and all-seasonal means, without 
large increases and decreases until the end of the twenty-first 
century. In contrast, the RCP8.5 scenario exhibits continu-
ously rising trends. By the end of the twenty-first century, 
the annual and all-seasonal means of TAS are expected to 
increase by up to 3 ℃. The spreads between RCMs in winter 
are larger than in summer or on the annual scale. Based on 
the graphs, it can be inferred that the scenario uncertainty 
will increase after the middle of the twenty-first century. 
For the PR, the variability of time series in each RCM and 
the spreads between RCMs are large with respect to the 
annual and all-seasonal means. The difference between the 
scenarios is very small, except for winter. Therefore, it can 
be estimated that the scenario uncertainty is small, except 
for winter. In the RCP8.5 scenario, the area-averaged winter 
MME time series over East Asia is expected to decrease 
slightly by the mid-twenty-first century and then increase 
by the end of the twenty-first century. This result was led by 
two HadGEM3-RA RCMs with large projections at the end 
of the twenty-first century, forced by HadGEM2-AO and 
MPI-ESM-LR GCMs.

We used cascade plots to express area-averaged future 
climate projections and uncertainties between models or sce-
narios for the future three periods of decadal means (2020s, 
2050s, and 2090s) over East Asia (Fig. 2). The uncertainty 
cascade plot is an intuitive tool that can be used to identify 
the contribution of uncertainty components (e.g., model 
spreads and scenario ranges) to total variances. The lowest 
points represent model spreads as the future projections of 
RCMs. The middle points are the MME values averaging 
RCMs for the same scenario, and scenario ranges can be 

Fig. 1   Temporal changes in the 10-year moving average for area-
averaged future projections calculated based on the 1981–2005 mean 
for the bias-corrected annual and seasonal means of TAS and PR over 

East Asia. The thin solid lines indicate each RCP model time series 
and the thick solid lines represent the MME time series for each RCP 
scenario
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identified through them. The top point is the average of the 
MME for each scenario. Most RCMs, except for a few RCMs 
in the winter RCP2.6 scenario, yield positive projections 
for the annual and all-seasonal means of TAS. The model 
spreads inconsiderably differ depending on the period in the 
RCP2.6 scenario, while those of the RCP8.5 scenario are 
predicted to widen over time. In the MME projection for 
each scenario, the RCP8.5 scenario projects increase over 
time. However, the RCP2.6 scenario yields a slight increase 
in the 2050s and, in the 2090s, the positive projection 
decreases to the level of the 2020s. Consequently, the dif-
ference between the MME projections of the two scenarios 
increases with time. In contrast to the TAS, the annual and 
all-seasonal means of PR show that the model projections in 
each scenario are inconsistent in all periods. The MMEs for 
the two scenarios in the annual and winter means have posi-
tive projections, and the overall scenario ranges and model 
spreads are predicted to widen with time.

We examined the fractional uncertainties and the frac-
tion of each component to the total variance for the future 
TAS and PR projections for the bias-corrected RCMs over 
East Asia (Figs. 3, 4, 5 and 6). For the annual and all-sea-
sonal means of TAS from the near-term projection up to 
approximately the 2020s, most of the uncertainties have 
resulted from the internal variability and model uncer-
tainty. In contrast, the scenario uncertainty has a minimal 
contribution. The internal variability and model uncertainty 
rapidly decrease until the 2040s as the warming intensifies 

and then gradually decrease (Fig. 3a). Furthermore, by the 
2040s, the internal variability declines more than the model 
uncertainty. Due to the changes in these two uncertainty 
components, the total fractional uncertainty is smallest in 
approximately the 2040s; after this period, the scenario 
uncertainty increases rapidly (Fig. 3c). Interestingly, these 
results of applying RCMs to the regional scale are consist-
ent with those of previous studies conducted on the global 
scale using GCMs (Stott and Kettleborough 2002; Cox and 
Stephenson 2007; Hawkins and Sutton 2009; 2011). The 
2030s to 2050s is the reference period to which most long-
term climate change adaptation policies until the 2090s are 
applied. The smallest total fractional uncertainty in this 
period has an important meaning (Cox and Stephenson 
2007). The internal variability is the uncertainty caused by 
the natural variability that occurs independently of the radia-
tive forcing and increases at smaller spatial or shorter time 
scales (Hawkins and Sutton 2009). Based on the near-term 
projection, South Korea's internal variability with respect to 
the fractional uncertainty and the fraction to the total vari-
ance will be larger than that of East Asia (Fig. 3b, d). These 
findings confirm the importance of the internal variability 
in decision-making for effective climate change adaptation 
in the near-term future at smaller regional scales, even in 
the RCM. In the case of the seasonal TAS uncertainty over 
East Asia, it is expected that summer will have the fractional 
uncertainty and the fraction to the total variance, which are 
almost similar to the annual mean results (Fig. 4a–d). On the 

Fig. 2   Cascade plots of future projections calculated based on 1981–2005 mean for the bias-corrected annual and seasonal means of TAS and 
PR for the future three periods of decadal means over East Asia
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other hand, it has been predicted that the internal variability 
in winter will be very large in the near-term projection.

Similar to TAS, in the case of the East Asian PR, the main 
uncertainty factors in the annual and all-seasonal means in 
the near-term projection are the internal variability and 
model uncertainty (Figs. 5a, c, 6). In the fractional uncer-
tainty, internal variability and model uncertainty tend to 
decrease as time increases (Figs. 5a, 6a, b). The main differ-
ence between the PR and TAS is that the internal variability 
of the PR considerably contributes to the fraction to the total 
variance, even in the long-term projections, until approxi-
mately the end of the twenty-first century (Figs. 5c, 6c, d). 
In addition, the inflection point of the total uncertainty does 
not appear or remains unclear in the fractional uncertainty 
(Figs. 5a, 6a, b). In the fractional uncertainty for the future 
projection of the summer mean of PR from Fig. 6a, the total 

fractional uncertainty during the near-future is predicted to 
be quite large. According to Eq. 16, total fractional uncer-
tainty is calculated as the ratio of the total variance of the 
future climate change projections and the mean change of 
all projections. Thus, the projection for summer PR during 
the near-future will be smaller than for other PR cases in 
the same period (Fig. 2), but the total variances for PR will 
be larger than the annual mean of PR, resulting in Fig. 6a. 
Over the entire future period, the results obtained for the 
annual and summer means of PR show that the difference 
in the physical processes of the RCM is the primary factor 
affecting the model uncertainty. Therefore, if the physical 
processes for the PR are improved, the model uncertainties 
can be decreased, and thus the total uncertainty will also be 
reduced. On the other hand, in winter with low precipitation, 
the scenario uncertainty is a considerable contribution factor 

Fig. 3   Temporal changes of a, b the fractional uncertainties and c, 
d the fraction of each component to the total variance for the future 
projection of the annual means of TAS for bias-corrected RCMs over 

East Asia and South Korea. The yellow, blue, and green colors indi-
cate the internal variability, model uncertainty, and scenario uncer-
tainty, respectively
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to the total uncertainty of the long–term projection, so the 
intensification of climate change signals seems to contribute 
to this cause (Fig. 6d). In the case of the annual mean of PR 
over South Korea, the contribution of the internal variability 
to the total uncertainty is similar to that of the model uncer-
tainty, even in the long-term projection (Figs. 5b, d). Con-
sequently, it can be speculated that the natural variability of 
the climate system, as well as the physical processes of the 
model, contribute to the uncertainty of PR over South Korea 
in the long-term projection. Moreover, as in the case of TAS, 
the internal variability of PR in South Korea is expected to 
be larger than that of East Asia in the near-term projection, 
confirming the importance of the internal variability on the 
regional or local scales again.

The S/N ratio of the future climate projection, the recipro-
cal of the total fractional uncertainty, is often used to evalu-
ate the robustness of the prediction. In the case of TAS, 

the maximum S/N ratio of the annual and winter means 
was close to 1. However, for both the TAS and PR, it is not 
expected that the annual and all-seasonal means will exceed 
1 in any period (Fig. S1). Furthermore, with respect to the 
spatial distribution of the S/N ratio, it was predicted that no 
grids will exceed one in all-seasons and periods of TAS and 
PR, except for the winter TAS in some parts of northcentral 
China (Fig. S2). Hawkins and Sutton (2009) reported that, 
although these results are challenging to assign great value 
to policy establishment for climate change adaptation, it is a 
challenge to overcome this through continuous improvement 
of RCM in the future.

The uncertainty components of future climate projec-
tions for East Asia or South Korea have been assessed 
above. To identify the uncertainty components of future 
projections at a detailed regional scale over East Asia, 
the gridded patterns of uncertainty component fractions 

Fig. 4   Temporal changes of a, b the fractional uncertainties and c, d the fraction of each component to the total variance for the future projection 
of the seasonal means of TAS for the bias for bias-corrected RCMs corrected RCMs over East Asia
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of TAS and PR averaged for the future three periods of 
decadal means are represented in Fig. 7. Here, if the origi-
nal spatial resolution of RCM is applied, interpretation at 
a regional scale is difficult because the difference in the 
uncertainty component fractions between grids is large 
(Fig. S3). Therefore, we averaged the future projection 
values of the grids at a 10° × 10° scale and expressed the 
uncertainty component fractions of TAS and PR for this. 
For the annual and all-seasonal means of TAS, it is pre-
dicted that, in most grids, the scenario uncertainty will 
be the dominant component during the 2050s and 2090s. 
This can also be approximately inferred through the spa-
tial patterns of future TAS projections for the bias–cor-
rected RCMs by scenarios for each model and MME over 
East Asia for each model and MME (Fig. S4–S6). In most 
grids, the differences in projections between models are 
expected to be small under the same scenario for the 
2050s and 2090s. In contrast, the MMEs represent that the 

differences in projections between scenarios for the same 
time period will be considerably large, which indicates the 
likelihood of obtaining the aforementioned result. With 
respect to the fraction of the uncertainty components to 
the total variance in the 2020s, in the case of the internal 
variability, the winter mean of TAS will exceed 50% in 
Hokkaido and eastern Japan. The scenario uncertainties 
in the 2020s are high in northeastern and central–western 
China and the Russian Primorsky Krai during the sum-
mer. This suggests that the anthropogenic warming signals 
in these regions may intensify earlier than in the other 
regions. For the annual and all–seasonal means of PR, the 
internal variability and model uncertainty are predicted to 
be the dominant components of the uncertainty during all 
future periods in most grids. The scenario uncertainty will 
be prominent in northern China and Mongolia during the 
2090s for the annual and winter means of PR. Moreover, 
these results can also be estimated from the prediction that 

Fig. 5   Same as Fig. 3 but for the annual means of PR
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the difference in PR projections of the MMEs between 
the 2090s scenarios in these regions will be larger than 
in other regions (Fig. S7–S9). Therefore, it is expected 
that the winter PR mean will make a contribution to the 
large fraction of scenario uncertainty regarding the future 
annual mean in this region during the 2090s. Furthermore, 
future winter PR in this region will likely be sensitive to 
intensifying anthropogenic warming signals at the end 
of the twenty-first century. In contrast to the TAS, some 
regions maintain the contribution of internal variability to 
the 2090s period in the annual and all–seasonal means. In 
particular, the internal variability of the winter PR means 
is predicted to be high in western Japan, northeastern 
China, and the northern part of the Korean Peninsula. The 
fraction of the model uncertainty will be > 50% in central 
and southern China during the 2090s with respect to the 
annual and seasonal means of PR. This means that the 
difference in the physical processes of RCMs dominates 

the uncertainty of PR in this region, even at the end of the 
twenty-first century.

4 � Conclusions and discussions

This study quantitatively evaluated the changes in the uncer-
tainty components of future TAS and PR projections over 
East Asia using bias-corrected high-resolution multi-RCM 
datasets. For the TAS, the main uncertainty factors of the 
annual and all-seasonal means of the near-term projec-
tion were the internal variability and model uncertainty, 
which decrease with time. The scenario uncertainty tended 
to increase continuously. In summer, the anthropogenic 
warming signals intensify early in northeastern and cen-
tral–western China and the Russian Primorsky Krai, and 
thus the scenario uncertainty is predicted to be high from 
the 2020s. Therefore, in these regions, it appears necessary 

Fig. 6   Same as Fig. 4 but for the seasonal means of PR
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for decision-makers to promptly establish adaptation plans 
to prepare for the intensified occurrence of anthropogenic 
warming signals, which may happen earlier than in other 
regions.

In the case of PR, the main uncertainty factors affecting 
the annual average and all-season values of the near-term 
projection were internal variability and model uncertainty. 
However, the main difference from TAS was that the PR was 
predicted to have a considerable internal variability contri-
bution, even in the long-term projection, based on the frac-
tion to the total variance. Based on the results obtained for 
the annual and summer means of PR, the model uncertainty 
due to differences in the physical processes among RCMs 
is a major factor affecting the PR uncertainty. Therefore, as 
suggested by Zhou et al. (2020), the model uncertainty of 
PR can be reduced by enhancing the model performance 
through the improvement of the physical processes, which 
will eventually decrease the total uncertainty. For both the 
TAS and PR of the near-term projection, the internal vari-
abilities in the magnitude of the fractional uncertainty and 
the fraction to the total variance were predicted to be larger 
in South Korea than those in East Asia.

Concerning the results of the uncertainties estimated 
for TAS and PR averaged in East Asia, the fraction of the 
scenario variability to the total uncertainty in the near-
term projection was expected to be very small, whereas the 
contribution of the internal variability was the largest. The 
internal variability in the near-future can be considerably 
reduced by enhancing the near-term climate prediction 
based on progress in climate science, such as advances 
in observations and an improved scientific understanding 
(Smith et al. 2007; Hawkins and Sutton 2009, 2011). As a 
result, the total uncertainty in the near-term projection will 
also decrease. The total variance (T) , obtained by combin-
ing the three uncertainty components (Eq. 16), increases 
over time in both TAS and PR (Fig. S10). Therefore, since 
uncertainty in the distant future is much larger than in 
the near future it is difficult to make policy decisions to 
respond to the projection of climate change in the dis-
tant future. As suggested above, since larger uncertainty 
leads to higher costs for climate change adaptation man-
agement (Giorgi 2010), preparing adaptation plans for 
near-term climate projections with less uncertainty and 
higher predictive performance is more effective than in 

Fig. 7   Gridded patterns of uncertainty component fractions of TAS and PR averaged for the future three periods of decadal means over East 
Asia at a 10° × 10° grid scale
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the distant future with larger uncertainty. Thus, because 
decision-makers establish the long-term climate change 
adaptation plans based on near-term projections, reducing 
uncertainties in the near-term prediction is crucial (Cox 
and Stephenson 2007). To achieve this, it is to reduce 
internal variability, which has the largest contribution to 
the uncertainty of the near-term projections. Especially 
the internal variability is expected to be more prominent 
in the near-term projection as the spatial scale is smaller, 
this indicates that reducing internal variability through 
the improvement of near-term climate prediction at the 
regional scale is more important than at the continental or 
sub-continental scale. In particular, at the regional scale, 
decision-making in near-term planning activities (e.g., 
agriculture, urban planning, health, etc.) is crucial. There-
fore, effective climate adaptation plans for these sectors 
require the reduction of the near-term uncertainty through 
the improvement of near-term climate prediction (WCRP 
2016; Kushnir et al. 2019). For the TAS, the scenario 
uncertainty is considerably large in the long-term projec-
tion, and the ultimate cause of this is future anthropogenic 
emissions of greenhouse gases and aerosols. Therefore, 
reducing the scenario uncertainty depends on human 
efforts and will for future climate change (Cox and Ste-
phenson 2007). Furthermore, adaptation costs to prepare 
for the intensification of anthropogenic warming can be 
reduced by reducing the scenario uncertainty.

This study has a limitation in that the numbers of 
applied models and future scenarios are relatively small. 
Nevertheless, it is meaningful as a study in which the com-
ponents of uncertainty for the future climate projections of 
East Asia from high-resolution multi-RCMs were assessed 
in detail for the first time by applying the available data, 
not GCM, as much as possible. Many studies on future 
climate projections produce results by the ensembles of 
several climate models rather than using a single climate 
model. This is because the results of the MME generally 
provide more reliable results than when a single climate 
model is applied (Park et al. 2016; 2020a). As presented in 
Sect. 1, to obtain reliable future climate projection results 
by using various climate models, it is required to quantita-
tively identify uncertainties in climate models and reduce 
them. The CORDEX-East Asia project team is currently 
producing high-resolution RCMs for SSP (Shared Socio-
economic Pathways) scenarios, which are being forced by 
CMIP6 GCMs across the East Asian domain. The results 
of uncertainty about future climate projections estimated 
by these the latest RCMs may differ from those of this 
study. For our upcoming study, we plan to evaluate the 
uncertainty of future East Asian climate projections by 
using the RCMs of SSP scenarios produced through the 
CORDEX-East Asia project and to compare them with 
the results of the RCP scenarios. Furthermore, we will 

compare the results according to the difference in the num-
ber of scenarios or RCMs applied to the study.

To improve the prediction of climate models, advances 
in understanding the physics and dynamics of climate are 
required, and our study will provide sufficient motivation 
for this. In particular, the role of RCM data produced by 
dynamically downscaling GCM for effective climate change 
response on a regional scale is becoming increasingly impor-
tant in East Asia, which has complicated climate processes 
as well as a huge population. Therefore, this study can be 
served as a fruitful reference when improving the simulation 
performance of RCM developed in the future. Park et al. 
(2020b) revealed that there would be considerable differ-
ences in the fractions of uncertainty components for mean 
and extreme in future climate projections over Seoul metro-
politan city. As mentioned in Sect. 1, East Asia is very vul-
nerable to climate extremes. Accordingly, it is necessary to 
identify the difference in the fractions of future uncertainty 
components between the mean and extreme climates over 
East Asia, and we plan to conduct this as a follow-up study.
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