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A B S T R A C T   

The Simplified Wet Bulb Globe Temperature (sWBGT) is widely used in heat stress assessments for climate- 
change studies, but its limitations have not been thoroughly explored. Building on recent critiques of 
sWBGT’s use for current climate on global scale, this study examines sWBGT’s biases using dynamically- 
downscaled sub-daily climate projections under multiple future emission scenarios. The analysis is aimed at 
understanding caveats in the application of sWBGT and the uncertainties in existing climate change analysis 
dependent on sWBGT. Results indicate sWBGT’s biases are heavily influenced by local near-surface air tem
perature, with overestimation of heat stress in East Asia regions, particularly hot and humid areas, due to static 
assumptions of radiation and wind speed. This overestimation is amplified in warmer climates, leading to 
exaggerated projected heat stress increases in future. In contrast, underestimations are found for heat stress levels 
attributed to low wind speeds and strong radiations, such as over the Tibetan Plateau and certain extreme events. 
Additionally, sWBGT underestimates variability in extreme heatwave events compared to WBGT in both current 
and future climates, irrespective of overestimation in absolute heatwave intensities. This study emphasizes the 
limitations of sWBGT, especially in future warmer climates. Importance of sub-daily data for capturing daily 
maximum heat stress level and reflecting diurnal variations in different components is also discussed. In 
conclusion, we recommend using Liljegren’s model (i.e., physics-based calculation) with high-resolution sub- 
daily climate data for more accurate outdoor heat stress assessments in climate change studies.   

1. Introduction 

Wet-bulb globe temperature (WBGT) is a crucial index for assessing 
the level of human exposure to heat stress (Spangler et al., 2022). 
Compared to other heat stress indices depending solely on near-surface 
air temperature (TAS) and relative humidity (RH) (e.g., Apparent 
Temperature, Humidex, Wet-Bulb Temperature), WBGT is designed to 
additionally reflect the combined effect of wind and solar radiation (e.g., 
cloud cover and sun angle), taking into account various heat transfer 

processes on the human body in the outdoor environments. As a result, it 
is extensively adopted in various national (e.g., National Oceanic and 
Atmospheric Administration of US, Bureau of Meteorology of Australia) 
and international (e.g., the International Organization for Standardiza
tion) standards, particularly for assessing heat stress risk in outdoor 
workplace such as construction, agriculture, athletic, and military set
tings (Lemke and Kjellstrom, 2012). 

However, WBGT observation is not commonly available due to the 
need for specialized equipment and expertise to measure. It is more 
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often that WBGT is calculated using standard meteorological data ob
tained from observation or reanalysis (Spangler et al., 2022). The orig
inal outdoor WBGT (i.e., in the condition of direct sunshine) was 
constructed as a weighted average of the ambient temperature (Ta), the 
natural wet-bulb temperature (Tw), and the black globe temperature 
(Tg

)
(i.e., WBGT = 0.1Ta + 0.7Tw + 0.2Tg), and various methods have 

been developed to approximate it from the commonly available mete
orological variables (e.g., TAS, RH, wind speed (WS), and surface 
downwelling shortwave radiation (RSDS)). According to Lemke and 
Kjellstrom (2012), more than seven calculation methods have been 
published to date, with Liljegren’s model (Liljegren et al., 2008) 
considered the most accurate due to its solid physical basis and verifi
cation against observation (Kong et al., 2022; Lemke et al., 2012; 
Spangler et al., 2022). While the Liljegren’s model has been used in the 
literature for reliable assessments of human heat stress (García-León 
et al., 2021; Grundstein et al., 2013; Spangler et al., 2022), the various 
simplified calculation methods (e.g., ACSM, 1984; Dunne et al., 2013; 
Lemke and Kjellstrom, 2012) continue to be widely adopted as proxies. 
Especially, one of the simplified versions of WBGT calculation, referred 
to as sWBGT hereafter (ACSM, 1984), appears to be dominantly 
employed in various studies, including but not limited to recent research 
in meteorology (e.g., Chen et al., 2020; Im et al., 2017; Lee and Min, 
2018), economics (e.g., Liu et al., 2021; Parsons et al., 2022), agriculture 
(e.g., Lima et al., 2021), and public health (Urban et al., 2019). The 
simplicity of sWBGT calculation, which only requires TAS and RH, may 
explain its widespread use, but it is attention-worthy that the underlying 
bias behind such simplification is not fully discussed and often over
looked. This oversight may result in misleading results and in
terpretations among sWBGT users, which underscores the importance of 
clearer understanding in how the underlying assumptions of sWBGT 
might affect the conclusions drawn from its usage. 

The bias in sWBGT arises from its assumption of a static outdoor 
environment with high solar radiation and low wind speed, disregarding 
their spatial and temporal variations. While Grundstein and Cooper 
(2018) compared sWBGT with Liljegren’s approach using several station 
observations in the U.S., a recent study by Kong and Huber (2022), for 
the first time, explicitly explored the bias of sWBGT on a global scale and 
found that sWBGT overestimates heat stress in hot-humid areas but 
underestimating extreme heat in dry areas. However, as they focused 
solely on validating sWBGT in the current climate using reanalysis data, 
there is no clear explanation of how such bias translates into model 
projections aiming for climate change studies. Since sWBGT has been 
frequently used to assess future heat stress impacts under global 
warming, it is imperative to understand how the bias of sWBGT can 
impact the projected changes for evaluating its uncertainty and suit
ability for appropriate application. 

Meanwhile, current heat stress impact studies mostly rely on daily 
meteorological data to calculate WBGT or sWBGT. Some studies simply 
used daily mean TAS and RH (e.g., Parsons et al., 2022), while others 
combined daily maximum TAS with daily mean (Lee and Min, 2018) or 
daily minimum RH (Russo et al., 2017) to approximate the daily 
maximum heat stress. However, there is no clarity on how well such 
approximations capture the daily extremes, whose accuracy may be 
predicated on the background climate, amplifying or dampening the 
actual maximum value. Besides the critical impacts of heat stress at the 
peak timing, it is also important to understand the characteristics of 
sub-daily WBGT, as it measures thermal comfort for guiding physical 
activities in an outdoor thermal environment that is directly impacted 
by a strong diurnal variation in meteorological variables (e.g., TAS, solar 
radiation). In fact, several studies have acknowledged the time-varying 
impacts of heat stress on human bodies and activities (e.g., labour loss, 
thermal disease), but the attempts for in-depth analysis of WBGT at a 
sub-daily time scale are relatively limited (Ullah et al., 2022) due to the 
rare availability of sub-daily climate data, particularly for long-term 
climate projections. Alternatively, statistical approaches, such as 

linear interpolation (Kjellstrom et al., 2018) or the statistical machine 
learning technique (Takakura et al., 2018), are sometimes utilized to 
approximate diurnal variation in WBGT using available daily data (e.g., 
daily mean TAS, daily maximum TAS). However, this may not be suf
ficient to reflect the synergistic effects of diurnal change in individual 
components of WBGT (i.e., Ta,Tw,Tg), which are influenced by a 
non-linear combination of four ambient factors (e.g., TAS, RH, radiation, 
WS). Moreover, this nonlinear relationship may exacerbate the 
discrepancy between WBGT and sWBGT in a non-uniform manner. 

Given the aforementioned limitations, we recognize the necessity to 
conduct further investigation into the bias introduced by replacing 
explicitly-calculated WBGT (i.e., physics-based WBGT) with sWBGT, 
using high-resolution datasets. If the bias is systematic and significant, 
accurate projections of WBGT is required for updating the assessment of 
future heat stress in a rapidly warming climate. To address this issue, our 
study focuses on analyzing the discrepancy between sWBGT and WBGT 
not only in the present climate but also in future warmer climates under 
different warming scenarios. To achieve this, we utilize multiple climate 
projections over East Asia at a temporally and spatially fine-scale (3- 
hourly, 25 km), which were recently produced based on the dynamical 
downscaling of the UK Earth System Model (UKESM) in Coupled Model 
Intercomparison Project Phase 6 (CMIP6) using four Regional Climate 
Models (RCMs). With the updated projections generated within the 
state-of-the-art modeling framework, we provide, for the first time, the 
comparison of WBGT and sWBGT with an in-depth analysis of their 
characteristics under climate change over East Asia. The discrepancy 
between WBGT and sWBGT under various emission scenarios is dis
cussed, including their abilities in describing heat stress levels and 
characterizing heatwave events for both current and future climates. 
This would provide valuable insights into how the bias in sWBGT be
haves in response to different levels of warming and for different aspects 
of heat stress impact research. 

2. Data and method 

2.1. Data 

In this study, two types of datasets are used: reanalysis and climate 
model projections. The reanalysis data from ECMWF-ERA5 (Hersbach 
et al., 2020) is used for analysing sWBGT bias in the present climate 
(1979–2014), and as a reference in the bias correction procedure. 
Climate projections are obtained from the outputs of four RCMs 
(Table S1) over the CORDEX-East Asia domain (Lee and Cha, 2020). 
They are the dynamical downscaling products of the UKESM in the 
newly released CMIP6. Four Shared Socioeconomic Pathways (SSPs) 
scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are included 
to cover low to high greenhouse gas emissions. The reference period is 
1979–2014 (36-year) and the full future period is adopted till the end of 
the 21st century (2015–2 100), but the analysis is mainly focused on the 
last 36-year (2065–2 100). 

For WBGT calculation, several variables are required, including 2- 
meter TAS, 2-meter RH, 10-meter WS, surface downwelling shortwave 
radiation (RSDS), and surface pressure. The variables at the same 3- 
hourly temporal frequency are extracted from all RCM simulations 
and ERA5. As RH is not directly provided in ERA5, near-surface dew 
point temperature is used together with TAS to derive RH by 
August–Roche–Magnus approximation. To ensure consistency, all RCM 
output is first spatially interpolated onto the 0.25◦ × 0.25◦ regular 
latitude-longitude grid of ERA5 before conducting calculations and an
alyses. All calculation and analyses are conducted separately for each 
RCM first and the unweighted ensemble mean is presented. 

2.2. Physics-based and simplified WBGT 

As described above, the physics-based algorithm developed by Lil
jegren et al. (2008) is widely recognized as the most accurate way for 
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calculating WBGT. The algorithm is based on fundamental laws of mass 
and energy balance to describe physical processes on Tw and Tg sensors. 
The full descriptions and equations can be found in Liljegren et al. 
(2008) and are not detailed here. Liljegren et al. (2008) provided their 
original code, and we used here the code rewritten by Kong and Huber 
(2022) in Python. 

sWBGT (ACSM, 1984) is designed to approximate outdoor WBGT as 
a function of TAS and RH (Eq. (1)), assuming constant moderate solar 
radiation and relatively low WS. 

sWBGT =0.567TAS + 0.393e + 3.94 (1)  

Where e is the vapor pressure (hPa) calculated as 

e=
(

RH
100

)

×6.105 × exp
(

17.27TAS
237.7 + TAS

)

(2)  

In this study, we treat WBGT calculated from Liljegren’s model as the 
reference standard to measure the bias brought by the simplified 
calculation. WBGT and sWBGT stand for the physics-based and simpli
fied calculation, respectively. The bias of sWBGT is defined as the 
discrepancy of sWBGT from WBGT (bias = sWBGT − WBGT). 

2.3. Bias correction 

As climate models are unavoidably prone to biases from various 
sources, bias correction is applied to correct the calculated heat stress 
indices from climate projections. Specifically, the trend-preserving 
method of Quantile Delta Mapping (QDM) is directly applied to the 
WBGT and sWBGT after they are calculated from the original meteo
rological variables. We proved this bias correction strategy, in a previous 
study using the same RCM data as in this study (Qiu et al., 2023), as an 
appropriate approach for adjusting heat stress projections. 

QDM is applied in 36-year sliding windows with a 12-year interval. 
Replacing the central 12 years, each 36-year window slides forward 12 
years until the end of the projection. To maintain the diurnal and 
interannual cycle, bias correction with the sliding window is applied 
separately for each 3-h interval in each calendar month (e.g., June 
00UTC). 

2.4. Analysis of heatwave characteristics 

For characterizing heat stress, we narrow our focus to the summer 
season (June-July-August: JJA) and over land points. After calculating 
and bias-correcting 3-hourly WBGT/sWBGT, the data is converted to the 
local time zone of each grid cell using the “lutz” R package (Spangler 
et al., 2022). The daily maximum and daily minimum values are picked 
up and labeled as WBGTmax/sWBGTmax and WBGTmin/sWBGTmin, 
respectively. 

In addition to the statistics of daily WBGTmax/sWBGTmax, we also 
analyze the characteristics of heatwave events based on consecutive 
days exceeding a certain threshold. In this study, a heatwave event is 
defined as a period of at least three consecutive days, a commonly 
adopted criterion in the literature (Becker et al., 2022; Chen et al., 2020; 
Li, 2020), during which WBGTmax/sWBGTmax exceeds the chosen 
threshold. The threshold is the local 99th percentile (Bumbaco et al., 
2013; Chen et al., 2020; Hajat et al., 2002) during the respective periods. 
Instead of taking the same threshold for the current and future climates, 
we adopt the period-based thresholds for counting the extremes in the 
corresponding periods. This method is for focusing on different behav
iors of heatwaves emerging under a new “norm” of a warmer climate, by 
minimizing the effect of the increase in mean TAS itself. For each 
heatwave event, the mean intensity (mean WBGTmax/sWBGTmax 
during the heatwave event) and mean relative intensity (relative in
tensity = intensity – threshold) are counted. While the mean intensity 
indicates the severity of heatwave events, the relative intensity can 
provide clues about the local variability of how far the events deviate 

from the threshold. 
It is noteworthy that although heatwaves are commonly recognized 

as periods of abnormally hot weather, there is no universal definition for 
it (Perkins, 2015; Sulikowska and Wypych, 2020), which instead natu
rally varies based on the objectives of different studies, such as assessing 
the heatwaves’ impacts on health, ecosystems, or infrastructures. While 
we apply a heatwave definition of WBGTmax exceeding local 99th 
percentile for at least three consecutive days in this study, sensitivity 
tests using different numbers of consecutive days (i.e., four and five), 
and why using the absolute thresholds for heatwave (such as >35 ◦C) is 
inappropriate for this study, are discussed in Section 3.3. We also note 
that the majority of computed WBGTmax/sWBGTmax values fall into 
the range of 25–35 ◦C (Figs. S1 and S2), which indicates that they are 
within the range of potential outdoor heat injury, and thus worth 
investigating. Although the WBGT/sWBGT levels in Tibet (TBT) may 
indicate low absolute risk for heat injury, it is still valuable for analysis 
because the sensitivity of heat injury to heat stress indices may vary 
among regions and populations, so we do not artificially remove any 
locations upon the predefined threshold. 

3. Results 

3.1. The discrepancy between sWBGT and WBGT in the present climate 

Taking WBGTmax computed by the Liljegren’s model as the ground 
truth, Fig. 1 illustrates the spatial distribution of the bias in sWBGTmax 
relative to WBGTmax during the historical period, averaged over the 36 
years of JJA mean and maximum. The QDM corrected model output well 
follows the reanalysis data. As shown in Fig. 1a–c, a consistent over
estimation in mean sWBGTmax is visible across the study domain, 
except for the TBT. The mean sWBGTmax overestimation is greater in 
hot, humid regions such as India, Southeast Asia, and South China, while 
it is lower in higher latitudes. Fig. 2 displays the diurnal cycles of both 
the heat stress indices and their components averaged over regions 
classified by their mean sWBGTmax bias, excluding areas with negli
gible bias (i.e., − 0.5 ◦C < bias<0.5 ◦C). R1 is a region showing under
estimation in the sWBGTmax (bias < − 0.5 ◦C), which is opposite to the 
majority of regions in the study domain. The negative bias mainly occurs 
around the TBT region, where the simplified calculation reflects only the 
relatively low TAS and low RH during the daytime but neglects the local 
high peak of radiation. On the other hand, R2, mostly located north of 
30◦N, exhibits the least bias, as it comprises the temperate climate zone 
that generally meets the sWBGT’s assumption of “moderate solar radi
ation and relatively low WS”. R3 and R4 are regions with relatively high 
overestimation in the daily maximum. It is evident that these regions 
have relatively high TAS, RH, and WS (i.e., coastal regions with hot, 
humid climates). Without considering the high WS, sWBGT building on 
the high TAS and RH shows a clear overestimation, and the warm bias is 
larger in the region with higher TAS (i.e., R4). The assumption of con
stant outdoor radiation and wind speed in sWBGT makes it suitable for 
estimating WBGTmax only over very limited regions, and there is a clear 
regional variation in the sWBGT bias relevant to the local climate 
characteristics. However, despite the spatial variation of bias in the daily 
maximum, the bias of sWBGT in terms of the daily minimum (i.e., 
sWBGTmin) is rather homogenous across the domain (low CV value) 
with an evident overestimation (Fig. S3). Given sWBGT’s underlying 
assumptions of radiation, it is not appropriate for assessing heat stress 
during the nighttime under any circumstance and thus leads to such 
overestimations in the daily minimum. 

Interestingly, the overwhelming overestimation is not observed in 
the extremes (i.e., JJA maximum). The 36-year averaged bias of the JJA 
maximum is displayed in Fig. 1b–d. The warm bias is reduced and even 
reversed to a cold bias, with a greater underestimation over TBT. Fig. S4 
shows the spatial patterns of TAS, RH, RSDS, and WS averaged over the 
timing when sWBGTmax and WBGTmax reach their seasonal maximums 
on each grid point, respectively, while Fig. S5 shows the average 
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throughout the whole summer. It can be seen that when WBGT reaches 
extremes, not only is TAS high, but high RSDS and very low WS are 
consistently observed across the entire domain. In comparison, sWBGT 
simply reflects its extremes based on the high TAS. However, it falls 
short in accurately measuring the intensity of extreme conditions and 
overlooks the precise timing of heat extremes that signal a higher like
lihood of heat injury for individuals exposed to outdoor heat stress, 
which is captured by WBGT. In this regard, sWBGT may not be effective 
and may not offer significant advantages over heat stress indicators 
based solely on TAS and RH in guiding outdoor activities. 

On the other hand, given that many previous studies used daily 
meteorological data for deriving daily WBGTmax/sWBGTmax, we 
calculate the average hour of the day when each component reaches 
their maximum (minimum for RH) to check if daily data can well cap
ture the diurnal peak of the heat stress (Fig. 3). Our findings show that 
for sWBGT, the timing of daily maximum TAS and daily minimum RH 
are highly similar, resulting in sWBGT also peaking around the same 
time. In contrast, for WBGT, its component—radiation (i.e., RSDS)— 
usually reaches its maximum earlier in the day than TAS, leading to an 
“intermediate” pattern in the peaking timing between maximum TAS 
and RSDS. The diurnal variation of WS may not significantly affect the 
peak time of WBGT as it is usually smaller than that of the other com
ponents (Fig. 2). This result suggests that sub-daily meteorological data 
is necessary not only for capturing sub-daily variations in heat stress but 
also for more accurate calculation of the daily maximum due to the lag 
among the diurnal cycle of the components. Furthermore, without tak
ing radiation effect into consideration, sWBGT cannot accurately reflect 
the diurnal cycle of heat stress even using the sub-daily data. 

3.2. The discrepancy between sWBGT and WBGT in the future warmer 
climate 

In this section, we investigate the bias of sWBGT in projecting 
changes in heat stress under global warming. Fig. 4 shows the spatial 
distribution of bias at the end of the 21st century for the projected 
change in summer mean and maximum sWBGTmax. Overestimation in 
the change of mean is primarily observed in south and southeast Asia, 
and Eastern China, with other regions showing minimal bias. The degree 
of bias is scaled with the emission scenarios, with the largest found in 
SSP5-8.5 and the least in SSP1-2.6. A larger overestimation is identified 
in the extremes (i.e., JJA max) across most regions, except for TBT, 
although the spatial distribution remains similar to that of the mean. 

To understand the dependencies of bias in projected heat stress 
change on different ambient factors, Fig. 5 presents a schematic figure 
illustrating how the bias of projected change of sWBGT varies as each 
component variable changes (i.e., ΔTAS, ΔRH, ΔRSDS, and ΔWS). Here, 
“Δ” denotes the change between the future and historical periods of the 
variable. The values (on the upper left legends) are selected to qualita
tively represent the possible variations of the meteorological variables 
over the study domain considering both mean and extreme cases (spatial 
quartiles are marked on Figs. S4–S5). In Fig. 5a, it is clear that the 
overestimation in sWBGT’s projected change (i.e., Δ sWBGT – ΔWBGT) 
increases as both the background TAS (i.e., historical TAS) and the TAS 
change (i.e., ΔTAS) increase. This implies that even under the same 
degree of warming, a larger overestimation in heat stress will be found 
for a place with a hotter climate condition when projected using sWBGT. 
A similar pattern is found in RH, in which both the background humidity 
and humidity increase result in a larger overestimation. Note that when 
RH is relatively low (e.g., RH = 30%), sWBGT might underestimate heat 
stress under certain conditions, such as low wind and high radiation. The 
same applies when RH decreases in the future, where sWBGT 

Fig. 1. The spatial distribution of bias in sWBGTmax (i.e., sWBGTmax – WBGTmax) in terms of the 36-year average of JJA (a, c) mean and (b, d) maximum. The data 
is from (a, b) ERA5 and (c, d) the ensemble mean of four RCMs’ QDM-corrected output during historical period (1979–2014). The black dotted areas are with less 
than 75% of years agreeing with the sign. The four blue circles on (c) are the locations of the grid points selected as representative of Lhasa (29.75◦N, 91.25◦E), 
Shanghai (31.25◦N, 121.50◦E), New Delhi (28.50◦N, 77.25◦E), and Beijing (40.00 ◦N, 116.50◦E) for the analysis in Section 3.2 and 3.3. The unit is ◦C. The spatial 
mean and coefficient of variation (CV = Standard Deviation/mean) over the region are marked on each sub-figure. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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underestimates the effect of reduced RH. 
On the other hand, the change of WS affects the bias in ΔsWBGT 

significantly under conditions of low background WS (e.g., 0.5 m/s), 
compared to higher background WS (e.g., 2.5 m/s or 4.5 m/s). As 
extremely low wind speeds are observed during the events when WBGT 
reaches its high extremes, in contrast to the extremes of sWBGT (Fig. S4 
d and h), sWBGT may underestimate the effect of WS changes on the 
projection of heat stress. It should be noted that the bias in ΔsWBGT 
discussed here differs from the bias in sWBGT discussed in the previous 
section. For example, sWBGT is likely to overestimate more for a higher 
historical WS; however, such bias is more likely to remain stable when 
WS continues to increase in the future, compared to a case with a lower 
historical WS. Therefore, the difference of bias between the future and 
historical periods is less significant. The same applies to RSDS, where a 
smaller bias of ΔsWBGT is observed in higher background RSDS. How
ever, such a bias is not linearly scaled by either background RSDS or 
ΔRSDS, that in Fig. 5d the lines of background RSDS at 450W/m2 and 
650W/m2 show little difference until the ΔRSDS reaches +25W/m2. 
Furthermore, unlike other factors showing overestimated ΔsWBGT with 
the increase, sWBGT will underestimate the heat stress level increase 
when RSDS increases, as the simplified assumption cannot reflect the 
thermal heating effects from increased radiation. 

In Fig. 6, we choose four city points from Lhasa (29.75◦N, 91.25◦E), 
Shanghai (31.25◦N, 121.50◦E), New Delhi (28.50◦N, 77.25◦E), and 
Beijing (40.00 ◦N, 116.50◦E), respectively, to illustrate how the bias of 
sWBGT varies in response to different ambient environments and levels 
of warming. While Shanghai, New Delhi, Beijing are densely populated 
cities within the study domain where the populations are likely to wit
ness heat injuries during the heatwaves, Lhasa is selected as another 
example due to its contrasting bias signal (i.e., the underestimation of 
bias over TBT), which has not been well discussed in previous literatures 
and thus is worth investigation. Also, it should be noted that even 

though the sWBGT/WBGT levels seem not to constitute huge risks of 
heat injury, heat stress is not entirely negligible in TBT (Bai et al., 2016; 
Wei et al., 2023). In fact, the sensitivity of heat injury to heat stress index 
levels varies among regions and populations, therefore it is still impor
tant to understand their change for different regions. 

The contour shading in Fig. 6 reflects the bias of sWBGT across 
ranges of TAS and RH, with the difference in shading determined only by 
WS and RSDS levels in WBGT calculation, as noted on the subtitles. The 
WS and RSDS are approximated by the mean and the extreme (when 
sWBGTmax/WBGTmax reach their JJA maximums) cases respectively. 
The dots on Fig. 6a–d represent the days when WBGT reaches the 0- 
100th percentiles in the current and future (SSP5-8.5) climates, while 
Fig. 6e–h compare only the 100th (i.e., the maximum) percentile from 
different emission scenarios. Based on the mean state, the positive bias is 
more pronounced under future warming scenario (i.e., SSP5-8.5), and is 
exacerbated by concurrent hot (i.e., high TAS) and humid conditions. 
For instance, while both Shanghai and Beijing experience comparable 
TAS, Shanghai exhibits a greater positive bias attributed to higher levels 
of humidity. In comparison, although New Delhi and Beijing are 
differently located in space, they exhibit similar bias patterns, possibly 
due to similar TAS and RH. As for the extreme cases, it turns out that WS 
and RSDS can critically affect the sign of sWBGT bias. In other words, 
negative biases (sWBGT < WBGT) may occur under strong solar radia
tion and light wind conditions. For a relative cold and dry region (e.g., 
Lhasa), such effects lead to a significant underestimation in the extreme 
heat stresses for both current and future climates. Nevertheless, given 
any fixed level of WS and RSDS, larger positive biases tend to occur 
under hotter and more humid conditions. This explains the positive bias 
in the extremes over Shanghai (in YRD) as well as the overestimation in 
the projected change of heat stress in Fig. 4. 

Although the changes of four ambient factors all influence the bias of 
sWBGT, TAS clearly shows the largest impact, and the bias magnitude 

Fig. 2. The diurnal cycle of (a–d) sWBGT (black) and WBGT (red), (e–h) TAS, (i–l) RH, (m–p) RSDS, and (q–t) WS averaged over areas with mean sWBGT bias, as 
shown in Fig. 1a, in the range of < -0.5 ◦C (first column, R1), 0.5–1.5 ◦C (second column, R2), 1.5–2.5 ◦C (third column, R3), and >2.5 ◦C (fourth column, R3), during 
JJA, historical period in ERA5 reanalysis data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

L. Qiu et al.                                                                                                                                                                                                                                      



Weather and Climate Extremes 44 (2024) 100677

6

significantly increases as TAS rises, which therefore further impact the 
bias of projected change. Meanwhile, as the spatial variation of ΔTAS (i. 
e., warming degree) is smaller compared to that of the climatological 
TAS pattern (Figs. S6 and S7), the pattern of climatological TAS mostly 
determines the spatial pattern of the bias in ΔsWBGT (Table 1), while 
the ΔsWBGT and ΔWBGT themselves follow the pattern of ΔTAS 
(Tables S2 and S3). Again, we emphasize that the bias in the climato
logical sWBGT and the bias in ΔsWBGT are determined by different 
factors non-linearly, as previously illustrated. While the underestima
tion in climatological sWBGT extremes is due to a systematic ignoration 
of high radiation and low wind cases, the overestimation of the change 
in sWBGT extremes is scaled mostly by the corresponding TAS. 

3.3. The discrepancy between sWBGT and WBGT in describing heatwave 
characteristics 

Defined in Section 2.4, the mean intensity and relative intensity of 
heatwaves in the historical and future, taking SSP5-8.5 as an example, 
are displayed in Figs. 7 and 8, respectively. Unsurprisingly, Fig. 7 reveals 
amplified heatwave intensities in the future relative to the historical 
period, as projected by both WBGT and sWBGT. This is mainly due to the 
increased thresholds (i.e., the 99th percentile of the period), along with 
the elevated mean TAS, in future periods, resulting in higher intensity 
levels of the considered heatwaves. In this context, the bias of sWBGT, in 
each period, shows a spatial distribution “intermediate” between that of 

the mean and that of the maximum (Fig. 1c and d). Consistent with prior 
findings presented in Fig. 4, overestimation is also found for the pro
jected heatwave intensity increase in sWBGT, resulting from the 
amplified overestimation in a warmer climate. 

By removing the local period-based percentile thresholds, the rela
tive intensity in Fig. 8 focuses more on the variability of local “hot days” 
rather than variation among different regions or between the periods. 
Consequently, much less spatial variation (less than 1 ◦C across the study 
region) and future changes (less than 0.5 ◦C for SSP585) are found. 
However, concerning sWBGT bias, a clear underestimation is observed 
across the study region. It starkly contrasts the aforementioned pattern 
of bias in both mean heat stress levels and the absolute intensities of 
heatwave events. This might be explained by a decreased variability 
characterized by sWBGT when compared to the full version. In Fig. 9, 
the kernel density distributions of heat stress levels during the heatwave 
events (sWBGTmax/WBGTmax during the heatwave events pooled 
together from all the days) from Lhasa, Shanghai, Beijing, and New 
Delhi are used to display the variability in extreme heat stress levels. A 
“taller” peak in the distribution of the extreme sWBGT than the WBGT 
suggests an underestimation of heatwave variabilities, resulting in a 
lower relative intensity as shown in Fig. 8. Such variabilities comprise 
both interannual and day-to-day variations in the daily maximum heat 
stress levels. The negative bias for the range in the annual mean heat
wave intensities shown in Fig. S8 is a demonstration for the under
estimated interannual variability in sWBGT. 

Fig. 3. The average hour of the day when (a) WBGT, (b) sWBGT, (c) TAS, (d) RSDS, (e) WS reach their daily maximum, and when (f) RH reaches its daily minimum 
during JJA, historical period in ERA5 reanalysis data. The time has been adjusted to local time zone. 
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As previously indicated in Section 2.4, while there is no universal 
definition of an heatwave event, we employ period-based percentiles as 
the heatwave threshold in this study to highlight heatwave character
istics under a new “norm” (i.e., a higher mean TAS) for examining dis
crepancies between sWBGT and WBGT in describing heatwave features. 
Compared to historical-percentile (e.g., Bumbaco et al., 2013; Chen 
et al., 2020; Hajat et al., 2002) or region-specific absolute thresholds (e. 
g., Hayhoe et al., 2004; Kim et al., 2016; Mcurari et al., 2015), the 
change of period-based threshold is less affected by the dominant effect 
of mean TAS increase. In addition, since we focus on a large domain, and 
solely during the summer season, using percentile-based threshold will 
ensure the consistency of our standards over different sub-domains with 
discrepant background climates. 

Nevertheless, we understand that heatwave assessment results could 
be sensitive to various definitions (Xu et al., 2016). Therefore, sensitivity 

tests have been conducted for exceeding the local 99th percentile 
threshold for different numbers of consecutive days (i.e., four and five; 
Figs. S9 and S10). The results show that changing the number of 
consecutive days produces no significant differences in the heatwave 
characteristics, thereby fortifying the robustness of our findings. How
ever, applying an absolute threshold, usually based empirically on heat 
exposure research, on sWBGT may lead to further biased results 
considering the systematic overestimation in it. This also hinders a 
comparison of the derived heatwave event with those derived using 
WBGT, making it less suitable for our study. Note that although the heat 
stress levels derived over the TBT region might correspond to an abso
lute value too low to have adverse impacts, we apply the period-based 
99th percentile threshold to TBT region, instead of absolute thresh
olds, to avoid artificially removing any data points and provide a more 
holistic picture of heat stress changes by including its contrasting 

Fig. 4. The spatial distribution of bias in sWBGTmax in terms of the projected change (2065–2100 vs. 1979–2014) of (a, c, e, g) the mean and (b, d, f, h) maximum of 
the WBGTmax under four SSP emission scenarios from the ensemble mean of four RCMs’ QDM-corrected output during JJA. The unit is ◦C. 
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behavior compared to other regions. 

4. Discussion and conclusion 

sWBGT has been widely used in various heat stress impact assess
ments due to its simplicity in calculation. While recent studies have 
criticized sWBGT for its inaccuracies (e.g., Kong and Huber, 2022), they 
focus solely on current climate using reanalysis data may not be suffi
cient in understanding the implications for future climate projections. 
Therefore, our research expands upon this by providing a comprehen
sive investigation of sWBGT’s biases in both current and future climates, 
based on the assumption that the WBGT computed through Liljegren’s 
model is the ground truth. The term “bias” refers to the gap of sWBGT 
from Liljegren’s WBGT, whereas the word ‘difference’ is exclusively 
used for describing a different behavior of the ‘bias’ (i.e., discrepancies 
in the bias amount). The study is expected to enhance the understanding 
of sWBGT’s limitations and offer insights into the uncertainties lying in 
the existing heat stress assessments that is dependent on sWBGT. 

Our findings indicate that the bias of sWBGT, in both current and 
future climates, is strongly influenced by local climate characteristics. In 
most regions of East Asia, sWBGT overestimates heat stress levels, with 
the bias being more pronounced in hot and humid regions. Especially, 
when TAS reaches over 40 ◦C, which is more likely to happen as climate 
warms, the overestimation reaches over 8 ◦C for the humid regions 
(Fig. 6). Likewise, sWBGT overestimates the increase in heat stress levels 
as TAS rises in the future projections, with the degree of overestimation 
highly correlated with local climatological TAS. In the meantime, due to 
the lag among the diurnal cycles of the relevant variables (i.e., TAS, RH, 
RSDS), sub-daily meteorological data is necessary for accurately 

capturing diurnal variations and daily maximums when calculating the 
outdoor heat stress. 

Conversely, in certain regions and under specific conditions, sWBGT 
also underestimates heat stress levels. The cold-dry, plateau area of 
Tibet serves as an example, where sWBGT fails to account for the sig
nificant diurnal variation in solar radiation. Similarly, extreme heat 
stress events are often associated with strong radiation and low wind, 
leading sWBGT to underestimate these occurrences and intensities given 
its static assumption in these two ambient factors. 

When comparing sWBGT and WBGT for heatwave analysis, we find a 
surprising underestimation of relative heatwave intensity in sWBGT. 
This underestimation is in contrast to the overestimation observed in 
mean heat stress levels and absolute heatwave intensity. It demonstrates 
the sWBGT’s inability to accurately capture the variability among 
extreme events, regardless of their absolute magnitudes. 

Among the existing literature, many studies employing sWBGT 
suggested more intense, prolonged, and frequent heatwaves under 
future climate change scenarios (e.g., Chen et al., 2020; Im et al., 2017; 
Lee and Min, 2018), which leads to heightened risks of heat injuries or 
mortalities (Urban et al., 2019) and deteriorated outdoor labor pro
ductivity (Liu et al., 2021; Parsons et al., 2022). However, our study 
shows that there may be a risk of overestimation in the heat stress index, 
attributable to the inappropriate assumptions of constant wind speed 
and solar radiation across time and space together with the insufficient 
understanding in sub-daily diurnal variation of the meteorological var
iables. Despite the fact that several physics-based heat stress indices (e. 
g., WBGT computed by Liljegren’s model, Universal Thermal Climate 
Index) project an exacerbation of future heatwaves (e.g., Cardoso et al., 
2023; García-León et al., 2021; Grundstein et al., 2013), sWBGT may 

Fig. 5. The schematic figure of how the bias of projected sWBGT change (y axis) evolves against the change (x axis) in (a) TAS, (b) RH, (c) WS, and (d) RSDS. In each 
sub-figure, the colors of the lines stand for different background conditions of the varying variables, and we assume the other variables as statically moderate 
situation (i.e., TAS = 25 ◦C, RH = 50%, WS = 2.5 m/s, RSDS = 650W/m2). The units for WBGT/sWBGT/TAS are ◦C, for RH is %, for RSDS is W/m2, and for WS is m/ 
s. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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provide a biased assessment that could trigger over-reacting alarms and 
negatively impact adaptation decisions. Therefore, our study empha
sizes the importance of cautiously interpreting heat stress measured by 
sWBGT, especially over regions of hot, humid climate. Furthermore, the 
nonlinear sensitivity of WBGT to wind and solar radiation change in the 
extreme conditions (i.e., extreme low wind and/or high solar radiation) 
calls for more accurate, high spatiotemporal resolution climate projec
tion data for providing a holistic view of the future heat that we will 
confront. 

In conclusion, our findings highlight the limitations of using sWBGT 
as an ad hoc approximation for estimating outdoor heat stress levels and 
projecting future changes. Researchers and policymakers should exer
cise caution when using sWBGT and daily meteorological data as the 
bias may lead to an inaccurate understanding of the true impacts of heat 
stress on human health, labor productivity, and other climate-sensitive 
sectors. As the explicit calculation of Liljegren’s model has recently 
been available in Python (Kong and Huber, 2022) and R (Casanueva 
et al., 2019), they are strongly recommended for use in combination 
with high-resolution climate data at sub-daily time scale for assessing 
outdoor heat stress in climate-change studies. 

Nevertheless, several caveats of the current study should be noted. 

First, there exist a variety of formulas to simplify WBGT calculation, 
each with their pros and cons depending on their applications and as
sumptions. This study only assesses one formula that has been widely 
adopted. A more comprehensive assessment of other calculation 
methods would be a valuable and necessary future work to enhance our 
understanding of heat-stress assessments. In addition, this study takes 
the physics-based WBGT as a “ground truth” for counting the bias in 
sWBGT, yet it does not indicate that WBGT is a perfect index applicable 
for all outdoor heat stress assessments. Other outdoor heat stress indices 
(e.g., National Oceanic and Atmospheric Administration/National 
Weather Service heat index; Sylla et al., 2018) are also important, which 
take different assumptions regarding to human body’s response to the 
ambient environment (Im et al., 2017b). Future heat stress studies may 
consider multiple heat stress indices for comprehensive assessments 
(Shin et al., 2022). Lastly, although Lilljegren’s physics-based method 
has been widely recognized as the most accurate estimation of outdoor 
WBGT, more observations may be necessary for further validation and 
improvements in WBGT calculations, particularly for applications in 
specific location or workplace and for diverse populations. 

Fig. 6. The contour shading represents the bias of sWBGT (sWBGT-WBGT) under different combinations of TAS and RH, given fixed WS and RSDS levels representing 
the mean and extreme situation over grid points in Lhasa (29.75◦N, 91.25◦E), Shanghai (31.25◦N, 121.50◦E), New Delhi (28.50◦N, 77.25◦E), and Beijing (40.00 ◦N, 
116.50◦E), respectively. The dots on Fig. 6(a–d) represent the day when WBGT reaches the 0th (i.e., the minimum), 1st, 2nd, 3rd …, and 100th (i.e., the maximum) 
percentiles in the current (green) and future (red, SSP5-8.5) climates. Fig. 6(e–h) compares the 100th percentiles from all the emission scenarios. The result is first 
calculated for each model and the ensemble mean is presented. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 1 
The spatial correlation between the bias of sWBGT’s projected change in JJA mean with the JJA mean TAS, HURS, RSDS, WS during the historical period and with their 
change.  

[sWBGT change – WBGT change] Historical Change 

TAS RH RSDS WS TAS RH RSDS WS 

SSP1-2.6 0.83 0.39 0.06 0.37 − 0.77 0.02 0.04 0.21 
SSP2-4.5 0.84 0.41 0.08 0.34 − 0.77 0.12 0.00 0.42 
SSP3-7.0 0.84 0.42 0.09 0.38 − 0.78 0.21 0.03 0.20 
SSP5-8.5 0.83 0.44 0.10 0.38 − 0.79 0.24 − 0.02 0.29  
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Fig. 7. The spatial distribution of the average intensity of heatwave events bias calculated using (a, d) WBGTmax and (b, e) sWBGTmax for the historical 
(1979–2014) and future (2065–2100, SSP5-8.5) periods. (c) and (f) are the bias of sWBGT during the two periods, respectively, and (g) and (h) are the projected 
change (2065–2100 vs. 1979–2014) using WBGT and sWBGT, respectively. (i) Is the bias of the projected change in sWBGT compared to WBGT. The unit is ◦C. 

Fig. 8. The spatial distribution of the relative intensity (i.e., intensity - threshold) of heatwave events bias calculated using (a, d) WBGTmax and (b, e) sWBGTmax for 
the historical (1979–2014) and future (2065–2100, SSP5-8.5) periods. (c) and (f) are the bias of sWBGT during the two periods, respectively. The unit is ◦C. 
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Fig. 9. The kernel density distribution estimated for extreme daily WBGTmax (dashed) and sWBGTmax (solid) (i.e., daily heat stress exceeding the 99th percentile of 
the period) during historical (1979–2014) and future (2065–2100, SSP5-8.5) periods. (a) to (d) is for the grid point selected from Lhasa (29.75◦N, 91.25◦E), Shanghai 
(31.25◦N, 121.50◦E), New Delhi (28.50◦N, 77.25◦E), and Beijing (40.00 ◦N, 116.50◦E), respectively. 
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